These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 15128110)

  • 21. Synthesis of glucose-responsive bioconjugated gel particles using surfactant-free emulsion polymerization.
    Kawamura A; Hata Y; Miyata T; Uragami T
    Colloids Surf B Biointerfaces; 2012 Nov; 99():74-81. PubMed ID: 22078928
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Calibration of the viscometric glucose sensor before its use in physiological liquids--compensation for the colloid-osmotic effect.
    Beyer U; Fleischer A; Kage A; Haueter U; Ehwald R
    Biosens Bioelectron; 2003 Oct; 18(11):1391-7. PubMed ID: 12896841
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In vitro evaluation of fluorescence glucose biosensor response.
    Aloraefy M; Pfefer TJ; Ramella-Roman JC; Sapsford KE
    Sensors (Basel); 2014 Jul; 14(7):12127-48. PubMed ID: 25006996
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Overcoming the aggregation problem: a new type of fluorescent ligand for ConA-based glucose sensing.
    Cummins BM; Li M; Locke AK; Birch DJS; Vigh G; Coté GL
    Biosens Bioelectron; 2015 Jan; 63():53-60. PubMed ID: 25058939
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Boronic Acid Functionalized Aza-Bodipy (azaBDPBA) based Fluorescence Optodes for the Analysis of Glucose in Whole Blood.
    Liu Y; Zhu J; Xu Y; Qin Y; Jiang D
    ACS Appl Mater Interfaces; 2015 Jun; 7(21):11141-5. PubMed ID: 25962342
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Homogeneous immunoassays based on fluorescence emission intensity variations of zinc selenide quantum dot sensors.
    Wang J; Mountziaris TJ
    Biosens Bioelectron; 2013 Mar; 41():143-9. PubMed ID: 22960008
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Subcutaneously implantable glucose sensors in patients with diabetes mellitus; still many problems].
    Gerritsen M; Jansen JA; Lutterman JA
    Ned Tijdschr Geneeskd; 2002 Jul; 146(28):1313-6. PubMed ID: 12148218
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Experimental validation of an optical system for interrogation of dermally-implanted microparticle sensors.
    Long R; McShane M
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():122-5. PubMed ID: 19964925
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantum dots-bienzyme hybrid system for the sensitive determination of glucose.
    Yuan J; Guo W; Wang E
    Biosens Bioelectron; 2008 May; 23(10):1567-71. PubMed ID: 18356038
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular distribution sensing in a fluorescence resonance energy transfer based affinity assay for glucose.
    Rolinski OJ; Birch DJ; McCartney L; Pickup JC
    Spectrochim Acta A Mol Biomol Spectrosc; 2001 Sep; 57(11):2245-54. PubMed ID: 11603841
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Performance of subcutaneously implanted glucose sensors for continuous monitoring.
    Gerritsen M; Jansen JA; Lutterman JA
    Neth J Med; 1999 Apr; 54(4):167-79. PubMed ID: 10218387
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vivo fluorescence detection of glucose using a single-walled carbon nanotube optical sensor: design, fluorophore properties, advantages, and disadvantages.
    Barone PW; Parker RS; Strano MS
    Anal Chem; 2005 Dec; 77(23):7556-62. PubMed ID: 16316162
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Novel micromachined silicon sensor for continuous glucose monitoring.
    Piechotta G; Albers J; Hintsche R
    Biosens Bioelectron; 2005 Nov; 21(5):802-8. PubMed ID: 16242621
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In vivo glucose monitoring: the clinical reality and the promise.
    Pickup JC; Hussain F; Evans ND; Sachedina N
    Biosens Bioelectron; 2005 Apr; 20(10):1897-902. PubMed ID: 15741056
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Non-invasively accuracy enhanced blood glucose sensor using shallow dense neural networks with NIR monitoring and medical features.
    Srichan C; Srichan W; Danvirutai P; Ritsongmuang C; Sharma A; Anutrakulchai S
    Sci Rep; 2022 Feb; 12(1):1769. PubMed ID: 35110583
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A fluorescence affinity hollow fiber sensor for continuous transdermal glucose monitoring.
    Ballerstadt R; Schultz JS
    Anal Chem; 2000 Sep; 72(17):4185-92. PubMed ID: 10994982
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A fluorescence enhancement-based sensor using glycosylated metalloporphyrin as a recognition element for levamisole assay.
    Gong FC; Wu DX; Cao Z; He XC
    Biosens Bioelectron; 2006 Sep; 22(3):423-8. PubMed ID: 16701990
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The role of H2O2 outer diffusion on the performance of implantable glucose sensors.
    Vaddiraju S; Burgess DJ; Jain FC; Papadimitrakopoulos F
    Biosens Bioelectron; 2009 Feb; 24(6):1557-62. PubMed ID: 18823767
    [TBL] [Abstract][Full Text] [Related]  

  • 39. PEGylation of concanavalin A to improve its stability for an in vivo glucose sensing assay.
    Locke AK; Cummins BM; Abraham AA; Coté GL
    Anal Chem; 2014 Sep; 86(18):9091-7. PubMed ID: 25133655
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanostructured biosensor for detecting glucose in tear by applying fluorescence resonance energy transfer quenching mechanism.
    Chen L; Tse WH; Chen Y; McDonald MW; Melling J; Zhang J
    Biosens Bioelectron; 2017 May; 91():393-399. PubMed ID: 28063388
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.