These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 15128192)

  • 1. The potential of optical coherence tomography in the engineering of living tissue.
    Mason C; Markusen JF; Town MA; Dunnill P; Wang RK
    Phys Med Biol; 2004 Apr; 49(7):1097-115. PubMed ID: 15128192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Imaging and characterization of bioengineered blood vessels within a bioreactor using free-space and catheter-based OCT.
    Gurjarpadhye AA; Whited BM; Sampson A; Niu G; Sharma KS; Vogt WC; Wang G; Xu Y; Soker S; Rylander MN; Rylander CG
    Lasers Surg Med; 2013 Aug; 45(6):391-400. PubMed ID: 23740768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Doppler optical coherence tomography for measuring flow in engineered tissue.
    Mason C; Markusen JF; Town MA; Dunnill P; Wang RK
    Biosens Bioelectron; 2004 Oct; 20(3):414-23. PubMed ID: 15494219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro remodeling and structural characterization of degradable polymer scaffold-based tissue-engineered vascular grafts using optical coherence tomography.
    Chen W; Yang J; Liao W; Zhou J; Zheng J; Wu Y; Li D; Lin Z
    Cell Tissue Res; 2017 Dec; 370(3):417-426. PubMed ID: 28887711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Motility imaging via optical coherence phase microscopy enables label-free monitoring of tissue growth and viability in 3D tissue-engineering scaffolds.
    Holmes C; Tabrizian M; Bagnaninchi PO
    J Tissue Eng Regen Med; 2015 May; 9(5):641-5. PubMed ID: 23401413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of optical coherence tomography as an imaging modality in tissue engineering.
    Yang Y; Dubois A; Qin XP; Li J; El Haj A; Wang RK
    Phys Med Biol; 2006 Apr; 51(7):1649-59. PubMed ID: 16552095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multimodal fluorescence lifetime imaging and optical coherence tomography for longitudinal monitoring of tissue-engineered cartilage maturation in a preclinical implantation model.
    Zhou X; Haudenschild AK; Li C; Marcu L
    J Biomed Opt; 2023 Feb; 28(2):026003. PubMed ID: 36818585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chitosan microchannel scaffolds for tendon tissue engineering characterized using optical coherence tomography.
    Bagnaninchi PO; Yang Y; Zghoul N; Maffulli N; Wang RK; Haj AJ
    Tissue Eng; 2007 Feb; 13(2):323-31. PubMed ID: 17518566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using swept-source optical coherence tomography to monitor the formation of neo-epidermis in tissue-engineered skin.
    Smith LE; Bonesi M; Smallwood R; Matcher SJ; MacNeil S
    J Tissue Eng Regen Med; 2010 Dec; 4(8):652-8. PubMed ID: 20603865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-resolution optical coherence tomography as a non-destructive monitoring tool for the engineering of skin equivalents.
    Spöler F; Först M; Marquardt Y; Hoeller D; Kurz H; Merk H; Abuzahra F
    Skin Res Technol; 2006 Nov; 12(4):261-7. PubMed ID: 17026657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical coherence tomography evaluation of the spatiotemporal effects of 3D bone marrow stromal cell culture using a bioreactor.
    Yamaguchi J; Onodera T; Homan K; Liang X; Matsuoka M; Miyazaki T; Yoshiaki H; Saito M; Iwasaki N
    J Biomed Mater Res B Appl Biomater; 2022 Aug; 110(8):1853-1861. PubMed ID: 35262287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of bioreactors in tissue engineering.
    Martin I; Wendt D; Heberer M
    Trends Biotechnol; 2004 Feb; 22(2):80-6. PubMed ID: 14757042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Practical aspects of OCT imaging in tissue engineering.
    Matcher SJ
    Methods Mol Biol; 2011; 695():261-80. PubMed ID: 21042978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. It takes a village to grow a tissue.
    Kaplan DL; Moon RT; Vunjak-Novakovic G
    Nat Biotechnol; 2005 Oct; 23(10):1237-9. PubMed ID: 16211065
    [No Abstract]   [Full Text] [Related]  

  • 15. Bioreactors for cardiovascular cell and tissue growth: a review.
    Barron V; Lyons E; Stenson-Cox C; McHugh PE; Pandit A
    Ann Biomed Eng; 2003 Oct; 31(9):1017-30. PubMed ID: 14582605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tissue engineering latest news.
    Papadaki M
    IEEE Eng Med Biol Mag; 2004; 23(3):95, 98. PubMed ID: 15355001
    [No Abstract]   [Full Text] [Related]  

  • 17. In vitro fabrication of a tissue engineered human cardiovascular patch for future use in cardiovascular surgery.
    Yang C; Sodian R; Fu P; Lüders C; Lemke T; Du J; Hübler M; Weng Y; Meyer R; Hetzer R
    Ann Thorac Surg; 2006 Jan; 81(1):57-63. PubMed ID: 16368335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of tissue-engineering principles toward the development of a semilunar heart valve substitute.
    Breuer CK; Mettler BA; Anthony T; Sales VL; Schoen FJ; Mayer JE
    Tissue Eng; 2004; 10(11-12):1725-36. PubMed ID: 15684681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and functional optical imaging of three-dimensional engineered tissue development.
    Tan W; Sendemir-Urkmez A; Fahrner LJ; Jamison R; Leckband D; Boppart SA
    Tissue Eng; 2004; 10(11-12):1747-56. PubMed ID: 15684683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell engineering: spearheading the next generation in healthcare.
    Jayasinghe SN
    Biomed Mater; 2008 Sep; 3(3):034004. PubMed ID: 18689921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.