BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 15128208)

  • 1. Multiple-bandwidth photoacoustic tomography.
    Ku G; Wang X; Stoica G; Wang LV
    Phys Med Biol; 2004 Apr; 49(7):1329-38. PubMed ID: 15128208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast photoacoustic imaging system based on 320-element linear transducer array.
    Yin B; Xing D; Wang Y; Zeng Y; Tan Y; Chen Q
    Phys Med Biol; 2004 Apr; 49(7):1339-46. PubMed ID: 15128209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoacoustic imaging of blood vessels with a double-ring sensor featuring a narrow angular aperture.
    Kolkman RG; Hondebrink E; Steenbergen W; van Leeuwen TG; de Mul FF
    J Biomed Opt; 2004; 9(6):1327-35. PubMed ID: 15568955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design, fabrication and testing of a dual-band photoacoustic transducer.
    Liu JH; Wei CW; Sheu YL; Tasi YT; Wang YH; Li PC
    Ultrason Imaging; 2008 Oct; 30(4):217-27. PubMed ID: 19507675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of ultrawide-band ultrasound pulses in optoacoustic tomography.
    Andreev VG; Karabutov AA; Oraevsky AA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Oct; 50(10):1383-90. PubMed ID: 14609079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arbitrary shaped, liquid filled reverberators with non-resonant transducers for broadband focusing of ultrasound using Time Reversed Acoustics.
    Sarvazyan A; Fillinger L
    Ultrasonics; 2009 Mar; 49(3):301-5. PubMed ID: 19062060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a Compact Photoacoustic Tomography Imaging System with Dual Single-Element Transducers for Image Enhancement.
    Zhao YJ; Zhu XL; Luo PY; Li A; Xiao W; Xiao X; Liu L; Meng MQ
    Curr Med Sci; 2021 Dec; 41(6):1151-1157. PubMed ID: 34907474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Air-coupled through-transmission fan-beam tomography using divergent capacitive ultrasonic transducers.
    Wright WM; Ingleby P; O'Sullivan IJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Dec; 52(12):2384-94. PubMed ID: 16463505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-side access, isotropic resolution, and multispectral three-dimensional photoacoustic imaging with rotate-translate scanning of ultrasonic detector array.
    Gateau J; Gesnik M; Chassot JM; Bossy E
    J Biomed Opt; 2015 May; 20(5):56004. PubMed ID: 25970085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues.
    Zhang E; Laufer J; Beard P
    Appl Opt; 2008 Feb; 47(4):561-77. PubMed ID: 18239717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo frequency domain optoacoustic tomography.
    Kellnberger S; Deliolanis NC; Queirós D; Sergiadis G; Ntziachristos V
    Opt Lett; 2012 Aug; 37(16):3423-5. PubMed ID: 23381278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo.
    Niederhauser JJ; Jaeger M; Lemor R; Weber P; Frenz M
    IEEE Trans Med Imaging; 2005 Apr; 24(4):436-40. PubMed ID: 15822801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoacoustic tomography of biological tissues with high cross-section resolution: reconstruction and experiment.
    Wang X; Xu Y; Xu M; Yokoo S; Fry ES; Wang LV
    Med Phys; 2002 Dec; 29(12):2799-805. PubMed ID: 12512713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-frequency transducers based on integrated piezoelectric thick films for medical imaging.
    Maréchal P; Levassort F; Holc J; Tran-Huu-Hue LP; Kosec M; Lethiecq M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Aug; 53(8):1524-33. PubMed ID: 16921905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monolithic Multiband CMUTs for Photoacoustic Computed Tomography With In Vivo Biological Tissue Imaging.
    Pun SH; Yu Y; Zhang J; Wang J; Cheng CH; Lei KF; Yuan Z; Mak PU
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Mar; 65(3):465-475. PubMed ID: 29505413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of efficient, broadband single-element (20-80 MHz) ultrasonic transducers for medical imaging applications.
    Cannata JM; Ritter TA; Chen WH; Silverman RH; Shung KK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Nov; 50(11):1548-57. PubMed ID: 14682638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined Pulse-Echo Ultrasound and Multispectral Optoacoustic Tomography With a Multi-Segment Detector Array.
    Mercep E; Dean-Ben XL; Razansky D
    IEEE Trans Med Imaging; 2017 Oct; 36(10):2129-2137. PubMed ID: 28541198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved in vivo photoacoustic microscopy based on a virtual-detector concept.
    Li ML; Zhang HE; Maslov K; Stoica G; Wang LV
    Opt Lett; 2006 Feb; 31(4):474-6. PubMed ID: 16496891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a multi frequency pulse diagnostic ultrasound device.
    Goodenough TI; Rajendram VS; Meyer S; Prêtre D
    Ultrasonics; 2005 Jan; 43(3):165-71. PubMed ID: 15556651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time photoacoustic tomograpghy using linear array probe and detection of line structure using Hough transform.
    Shin SW; Park J; Shin DH; Song CG; Kim KS
    Biomed Mater Eng; 2015; 26 Suppl 1():S1483-90. PubMed ID: 26405912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.