These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 15128214)

  • 21. A traveling wave ultrasonic motor of high torque.
    Chen Y; Liu QL; Zhou TY
    Ultrasonics; 2006 Dec; 44 Suppl 1():e581-4. PubMed ID: 16793077
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microfeeding with different ultrasonic nozzle designs.
    Lu X; Yang S; Evans JR
    Ultrasonics; 2009 Jun; 49(6-7):514-21. PubMed ID: 19201436
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of an innovative device for ultrasonic elliptical vibration cutting.
    Zhou M; Hu L
    Ultrasonics; 2015 Jul; 60():76-81. PubMed ID: 25769218
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Experimental measurements and finite element analysis of the coupled vibrational characteristics of piezoelectric shells.
    Huang YH; Ma CC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Apr; 59(4):785-98. PubMed ID: 22547289
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Three dimensional transient multifield analysis of a piezoelectric micropump for drug delivery system for treatment of hemodynamic dysfunctions.
    Nisar A; Afzulpurkar N; Tuantranont A; Mahaisavariya B
    Cardiovasc Eng; 2008 Dec; 8(4):203-18. PubMed ID: 19030990
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fabrication and performance of high-frequency composite transducers with triangular-pillar geometry.
    Brown JA; Chérin E; Yin J; Foster FS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Apr; 56(4):827-36. PubMed ID: 19406712
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Design study of piezoelectric energy-harvesting devices for generation of higher electrical power using a coupled piezoelectric-circuit finite element method.
    Zhu M; Worthington E; Tiwari A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010; 57(2):427-37. PubMed ID: 20178909
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of a micromachined piezoelectric microphone for aeroacoustics applications.
    Horowitz S; Nishida T; Cattafesta L; Sheplak M
    J Acoust Soc Am; 2007 Dec; 122(6):3428-36. PubMed ID: 18247752
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Resonator combined with a piezoelectric actuator for chemical analysis by force microscopy.
    Kawai Y; Ono T; Esashi M; Meyer E; Gerber C
    Rev Sci Instrum; 2007 Jun; 78(6):063709. PubMed ID: 17614618
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Study on the vibration characteristics of a finite-width corrugated cylindrical shell piezoelectric transducer.
    Xu L; Du H; Hu H; Shan X; Chen H; Hu Y; Chen X
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jun; 57(6):1460-9. PubMed ID: 20529721
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The acoustic properties, centered on 20 MHZ, of an IEC agar-based tissue-mimicking material and its temperature, frequency and age dependence.
    Brewin MP; Pike LC; Rowland DE; Birch MJ
    Ultrasound Med Biol; 2008 Aug; 34(8):1292-306. PubMed ID: 18343021
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modeling of a high frequency ultrasonic transducer using periodic structures.
    Maréchal P; Haumesser L; Tran-Huu-Hue LP; Holc J; Kuscer D; Lethiecq M; Feuillard G
    Ultrasonics; 2008 Apr; 48(2):141-9. PubMed ID: 18255118
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Silicon micromachined ultrasonic scalpel for the dissection and coagulation of tissue.
    Lockhart R; Friedrich F; Briand D; Margairaz P; Sandoz JP; Brossard J; Keppner H; Olson W; Dietz T; Tardy Y; Meyer H; Stadelmann P; Robert C; Boegli A; Farine PA; de Rooij NF; Burger J
    Biomed Microdevices; 2015 Aug; 17(4):77. PubMed ID: 26153517
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Study on the broadband tonpilz transducer with a single hole.
    Xiping H; Jing H
    Ultrasonics; 2009 May; 49(4-5):419-23. PubMed ID: 19081123
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sensitive ultrasonic vibrometer for very low frequency applications.
    Cretin B; Vairac P; Jachez N; Pergaud J
    Rev Sci Instrum; 2007 Aug; 78(8):085112. PubMed ID: 17764360
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Vibration analysis and sound field characteristics of a tubular ultrasonic radiator.
    Liang Z; Zhou G; Zhang Y; Li Z; Lin S
    Ultrasonics; 2006 Dec; 45(1-4):146-51. PubMed ID: 16987537
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Piezoelectric ultrasonic motor using longitudinal-torsional composite resonance vibration.
    Ohnishi O; Myohga O; Uchikawa T; Tamegai M; Inoue T; Takahashi S
    IEEE Trans Ultrason Ferroelectr Freq Control; 1993; 40(6):687-93. PubMed ID: 18263235
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Amplitude modulation drive to rectangular-plate linear ultrasonic motors with vibrators dimensions 8 mm x 2.16 mm X 1 mm.
    Ming Y; Hanson B; Levesley MC; Walker PG; Watterson KG
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Dec; 53(12):2435-41. PubMed ID: 17186925
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of multifrequency langevin composite ultrasonic transducers.
    Lin S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Sep; 56(9):1990-8. PubMed ID: 19812002
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Linear theory on temporal instability of megahertz faraday waves for monodisperse microdroplet ejection.
    Tsai SC; Tsai CS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Aug; 60(8):1746-55. PubMed ID: 25004544
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.