BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 15128233)

  • 41. Aryl(trifluoroethyl)iodonium Triflimide and Nitrile Solvent Systems: A Combination for the Stereoselective Synthesis of Armed 1,2-trans-β-Glycosides at Noncryogenic Temperatures.
    Chu AH; Minciunescu A; Bennett CS
    Org Lett; 2015 Dec; 17(24):6262-5. PubMed ID: 26634960
    [TBL] [Abstract][Full Text] [Related]  

  • 42. β-Arabinofuranosylation using 5-O-(2-quinolinecarbonyl) substituted ethyl thioglycoside donors.
    Liu QW; Bin HC; Yang JS
    Org Lett; 2013 Aug; 15(15):3974-7. PubMed ID: 23879464
    [TBL] [Abstract][Full Text] [Related]  

  • 43. DIDMH in combination with triflic acid - A new promoter system for thioglycoside glycosyl donors.
    Heuckendorff M; Jensen HH
    Carbohydr Res; 2018 Jan; 455():86-91. PubMed ID: 29175659
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Influence of the 4,6-O-benzylidene, 4,6-O-phenylboronate, and 4,6-O-polystyrylboronate protecting groups on the stereochemical outcome of thioglycoside-based glycosylations mediated by 1-benzenesulfinyl piperidine/triflic anhydride and N-iodosuccinimide/trimethylsilyl triflate.
    Crich D; de la Mora M; Vinod AU
    J Org Chem; 2003 Oct; 68(21):8142-8. PubMed ID: 14535796
    [TBL] [Abstract][Full Text] [Related]  

  • 45. S-glycosides in medicinal chemistry: Novel synthesis of cyanoethylene thioglycosides and their pyrazole derivatives.
    Elgemeie G; Fathy N; Zaghary W; Farag A
    Nucleosides Nucleotides Nucleic Acids; 2017 Mar; 36(3):198-212. PubMed ID: 28045592
    [TBL] [Abstract][Full Text] [Related]  

  • 46. 2-Nitroglycals: versatile intermediates for efficient and highly stereoselective base-catalyzed glycoside bond formations.
    Reddy BG; Schmidt RR
    Nat Protoc; 2008; 3(1):114-21. PubMed ID: 18193027
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Stereocontrolled synthesis of D- and L-beta-rhamnopyranosides with 4-O-6-S-alpha-cyanobenzylidene-protected 6-thiorhamnopyranosyl thioglycosides.
    Crich D; Li L
    J Org Chem; 2009 Jan; 74(2):773-81. PubMed ID: 19132946
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A novel furanoside synthesis. Conversion of methyl 6-deoxy-6-nitro-alpha-d-glucopyranoisde into methyl 3-deoxy-3-nitro-beta-l-ribo- and -arabinofuranosides and corresponding amino sugars.
    Baer HH; Furić I
    J Org Chem; 1968 Oct; 33(10):3731-4. PubMed ID: 5743776
    [No Abstract]   [Full Text] [Related]  

  • 49. Four isomeric ethyl 1-thioglycosides from 2-amino-2-deoxy-D-arabinose.
    Wolfrom ML; Inouye S
    Carbohydr Res; 1975 May; 41():117-33. PubMed ID: 1137834
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Concise and efficient synthesis of 2-acetamido-2-deoxy-beta-D-hexopyranosides of diverse aminosugars from 2-acetamido-2-deoxy-beta-D-glucose.
    Cai Y; Ling CC; Bundle DR
    J Org Chem; 2009 Jan; 74(2):580-9. PubMed ID: 19132941
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An unusual course of thioglycoside activation with bromine: synthesis and crystal structure of 4-O-acetyl-2-bromo-2,3,6-trideoxy-3-C-methyl-3-trifluroacetamido-alpha-L-altropyranosyl bromide.
    Dulin ML; Noecker LA; Kassel WS; Giuliano RM
    Carbohydr Res; 2003 May; 338(10):1121-5. PubMed ID: 12706979
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Incorporation of a S-glycosidic linkage into a glyconucleoside changes the conformational preference of both furanose sugars.
    Buckingham J; Brazier JA; Fisher J; Cosstick R
    Carbohydr Res; 2007 Jan; 342(1):16-22. PubMed ID: 17145047
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enantiomeric separation by MEKC using dodecyl thioglycoside surfactants: importance of an equatorially oriented hydroxy group at C-2 position in separation of dansylated amino acids.
    Tano C; Son SH; Furukawa J; Furuike T; Sakairi N
    Electrophoresis; 2009 Aug; 30(15):2743-6. PubMed ID: 19621373
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Efficient Synthesis of 2-OH Thioglycosides from Glycals Based on the Reduction of Aryl Disulfides by NaBH
    Guo YF; Luo T; Feng GJ; Liu CY; Dong H
    Molecules; 2022 Sep; 27(18):. PubMed ID: 36144712
    [TBL] [Abstract][Full Text] [Related]  

  • 55. 1,2-migration of 2'-oxoalkyl group and concomitant synthesis of 2-C-branched O-, S-glycosides and glycosyl azides via 1,2-cyclopropanated sugars.
    Shao H; Ekthawatchai S; Chen CS; Wu SH; Zou W
    J Org Chem; 2005 Jun; 70(12):4726-34. PubMed ID: 15932311
    [TBL] [Abstract][Full Text] [Related]  

  • 56. 2-nitroglycals as powerful glycosyl donors: application in the synthesis of biologically important molecules.
    Schmidt RR; Vankar YD
    Acc Chem Res; 2008 Aug; 41(8):1059-73. PubMed ID: 18598060
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Synthesis of monodeoxy analogues of the trisaccharide alpha-D-Glcp-(1-->3)-alpha-D-Manp-(1-->2)-alpha-D-ManpOMe recognised by Calreticulin/Calnexin.
    Gemma E; Lahmann M; Oscarson S
    Carbohydr Res; 2006 Jul; 341(10):1533-42. PubMed ID: 16616903
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Synthesis of ketopyranosyl glycosides and determination of their anomeric configuration on the basis of the three-bond carbon-proton couplings.
    Májer G; Borbás A; Illyés TZ; Szilágyi L; Bényei AC; Lipták A
    Carbohydr Res; 2007 Aug; 342(11):1393-404. PubMed ID: 17553473
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Direct synthesis of the beta-l-rhamnopyranosides.
    Crich D; Picione J
    Org Lett; 2003 Mar; 5(5):781-4. PubMed ID: 12605514
    [TBL] [Abstract][Full Text] [Related]  

  • 60. 2,3-Anhydrosugars in glycoside bond synthesis. Application to alpha-D-galactofuranosides.
    Bai Y; Lowary TL
    J Org Chem; 2006 Dec; 71(26):9658-71. PubMed ID: 17168583
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.