These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 15128432)

  • 1. Statistical monitoring of weak spots for improvement of normalization and ratio estimates in microarrays.
    Dozmorov I; Knowlton N; Tang Y; Centola M
    BMC Bioinformatics; 2004 May; 5():53. PubMed ID: 15128432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of local background intensities in the normalization of cDNA microarray data with a skewed expression profiles.
    Kim JH; Shin DM; Lee YS
    Exp Mol Med; 2002 Jul; 34(3):224-32. PubMed ID: 12216114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systematic approaches for incorporating control spots and data quality information to improve normalization of cDNA microarray data.
    Wang D; Zhang CH; Soares MB; Huang J
    J Biopharm Stat; 2007; 17(3):415-31. PubMed ID: 17479391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A statistical method for flagging weak spots improves normalization and ratio estimates in microarrays.
    Yang MC; Ruan QG; Yang JJ; Eckenrode S; Wu S; McIndoe RA; She JX
    Physiol Genomics; 2001 Oct; 7(1):45-53. PubMed ID: 11595791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spotting effect in microarray experiments.
    Mary-Huard T; Daudin JJ; Robin S; Bitton F; Cabannes E; Hilson P
    BMC Bioinformatics; 2004 May; 5():63. PubMed ID: 15151695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rank Difference Analysis of Microarrays (RDAM), a novel approach to statistical analysis of microarray expression profiling data.
    Martin DE; Demougin P; Hall MN; Bellis M
    BMC Bioinformatics; 2004 Oct; 5():148. PubMed ID: 15476558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiplicative background correction for spotted microarrays to improve reproducibility.
    Zhang D; Zhang M; Wells MT
    Genet Res; 2006 Jun; 87(3):195-206. PubMed ID: 16818002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Normalization methods for analysis of microarray gene-expression data.
    Chen YJ; Kodell R; Sistare F; Thompson KL; Morris S; Chen JJ
    J Biopharm Stat; 2003 Feb; 13(1):57-74. PubMed ID: 12635903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimized LOWESS normalization parameter selection for DNA microarray data.
    Berger JA; Hautaniemi S; Järvinen AK; Edgren H; Mitra SK; Astola J
    BMC Bioinformatics; 2004 Dec; 5():194. PubMed ID: 15588297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new outlier removal approach for cDNA microarray normalization.
    Wu Y; Yan L; Liu H; Sun H; Xie H
    Biotechniques; 2009 Aug; 47(2):691-2, 694-700. PubMed ID: 19737130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving the statistical detection of regulated genes from microarray data using intensity-based variance estimation.
    Comander J; Natarajan S; Gimbrone MA; García-Cardeña G
    BMC Genomics; 2004 Feb; 5(1):17. PubMed ID: 15113402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Normalization of low-density microarray using external spike-in controls: analysis of macrophage cell lines expression profile.
    Fardin P; Moretti S; Biasotti B; Ricciardi A; Bonassi S; Varesio L
    BMC Genomics; 2007 Jan; 8():17. PubMed ID: 17229315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accuracy of cDNA microarray methods to detect small gene expression changes induced by neuregulin on breast epithelial cells.
    Yao B; Rakhade SN; Li Q; Ahmed S; Krauss R; Draghici S; Loeb JA
    BMC Bioinformatics; 2004 Jul; 5():99. PubMed ID: 15272935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microarray data quality control improves the detection of differentially expressed genes.
    Kauffmann A; Huber W
    Genomics; 2010 Mar; 95(3):138-42. PubMed ID: 20079422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selection and validation of normalization methods for c-DNA microarrays using within-array replications.
    Fan J; Niu Y
    Bioinformatics; 2007 Sep; 23(18):2391-8. PubMed ID: 17660210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-parameter lognormal distribution ubiquitously found in cDNA microarray data and its application to parametric data treatment.
    Konishi T
    BMC Bioinformatics; 2004 Jan; 5():5. PubMed ID: 14718068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SED, a normalization free method for DNA microarray data analysis.
    Wang H; Huang H
    BMC Bioinformatics; 2004 Sep; 5():121. PubMed ID: 15345033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Normalization and quantification of differential expression in gene expression microarrays.
    Steinhoff C; Vingron M
    Brief Bioinform; 2006 Jun; 7(2):166-77. PubMed ID: 16772260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ARSyN: a method for the identification and removal of systematic noise in multifactorial time course microarray experiments.
    Nueda MJ; Ferrer A; Conesa A
    Biostatistics; 2012 Jul; 13(3):553-66. PubMed ID: 22085896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel normalization method for effective removal of systematic variation in microarray data.
    Chua SW; Vijayakumar P; Nissom PM; Yam CY; Wong VV; Yang H
    Nucleic Acids Res; 2006; 34(5):e38. PubMed ID: 16528099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.