These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 15128436)

  • 21. From protein structure to function.
    Orengo CA; Todd AE; Thornton JM
    Curr Opin Struct Biol; 1999 Jun; 9(3):374-82. PubMed ID: 10361094
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Expectations from structural genomics revisited: an analysis of structural genomics targets.
    Saqi MA; Wild DL
    Am J Pharmacogenomics; 2005; 5(5):339-42. PubMed ID: 16196503
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Targeting novel folds for structural genomics.
    McGuffin LJ; Jones DT
    Proteins; 2002 Jul; 48(1):44-52. PubMed ID: 12012336
    [TBL] [Abstract][Full Text] [Related]  

  • 24. PCBOST: Protein classification based on structural trees.
    Gordeev AB; Kargatov AM; Efimov AV
    Biochem Biophys Res Commun; 2010 Jul; 397(3):470-1. PubMed ID: 20573601
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural classification of small, disulfide-rich protein domains.
    Cheek S; Krishna SS; Grishin NV
    J Mol Biol; 2006 May; 359(1):215-37. PubMed ID: 16618491
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Protein families and their evolution-a structural perspective.
    Orengo CA; Thornton JM
    Annu Rev Biochem; 2005; 74():867-900. PubMed ID: 15954844
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Automated discovery of structural signatures of protein fold and function.
    Turcotte M; Muggleton SH; Sternberg MJ
    J Mol Biol; 2001 Feb; 306(3):591-605. PubMed ID: 11178916
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Automatic target selection for structural genomics on eukaryotes.
    Liu J; Hegyi H; Acton TB; Montelione GT; Rost B
    Proteins; 2004 Aug; 56(2):188-200. PubMed ID: 15211504
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Protein family clustering for structural genomics.
    Yan Y; Moult J
    J Mol Biol; 2005 Oct; 353(3):744-59. PubMed ID: 16185712
    [TBL] [Abstract][Full Text] [Related]  

  • 30. ArchDB: automated protein loop classification as a tool for structural genomics.
    Espadaler J; Fernandez-Fuentes N; Hermoso A; Querol E; Aviles FX; Sternberg MJ; Oliva B
    Nucleic Acids Res; 2004 Jan; 32(Database issue):D185-8. PubMed ID: 14681390
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Protein folding and the organization of the protein topology universe.
    Lindorff-Larsen K; Røgen P; Paci E; Vendruscolo M; Dobson CM
    Trends Biochem Sci; 2005 Jan; 30(1):13-9. PubMed ID: 15653321
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Uncovering new families and folds in the natural protein universe.
    Durairaj J; Waterhouse AM; Mets T; Brodiazhenko T; Abdullah M; Studer G; Tauriello G; Akdel M; Andreeva A; Bateman A; Tenson T; Hauryliuk V; Schwede T; Pereira J
    Nature; 2023 Oct; 622(7983):646-653. PubMed ID: 37704037
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CoC: a database of universally conserved residues in protein folds.
    Donald JE; Hubner IA; Rotemberg VM; Shakhnovich EI; Mirny LA
    Bioinformatics; 2005 May; 21(10):2539-40. PubMed ID: 15746286
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Monte Carlo estimation of the number of possible protein folds: effects of sampling bias and folds distributions.
    Leonov H; Mitchell JS; Arkin IT
    Proteins; 2003 May; 51(3):352-9. PubMed ID: 12696047
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The properties of protein family space depend on experimental design.
    Kunin V; Teichmann SA; Huynen MA; Ouzounis CA
    Bioinformatics; 2005 Jun; 21(11):2618-22. PubMed ID: 15769834
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Novel structural tree for (alpha + beta)-proteins containing abCd-units].
    Gordeev AB; Efimov AV
    Mol Biol (Mosk); 2009; 43(3):521-6. PubMed ID: 19548538
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Less is more: towards an optimal universal description of protein folds.
    Szustakowski JD; Kasif S; Weng Z
    Bioinformatics; 2005 Sep; 21 Suppl 2():ii66-71. PubMed ID: 16204127
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Protein folds and protein folding.
    Schaeffer RD; Daggett V
    Protein Eng Des Sel; 2011 Jan; 24(1-2):11-9. PubMed ID: 21051320
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A hierarchical approach to protein fold prediction.
    Mohammad TA; Nagarajaram HA
    J Integr Bioinform; 2011 Oct; 8(1):185. PubMed ID: 22008449
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Methodologies for target selection in structural genomics.
    Linial M; Yona G
    Prog Biophys Mol Biol; 2000; 73(5):297-320. PubMed ID: 11063777
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.