These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 15128740)

  • 1. Kinetic and mechanistic studies of a cell cycle protein phosphatase Cdc14.
    Wang WQ; Bembenek J; Gee KR; Yu H; Charbonneau H; Zhang ZY
    J Biol Chem; 2004 Jul; 279(29):30459-68. PubMed ID: 15128740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cdc14 phosphatases use an intramolecular pseudosubstrate motif to stimulate and regulate catalysis.
    Milholland KL; Waddey BT; Velázquez-Marrero KG; Lihon MV; Danzeisen EL; Naughton NH; Adams TJ; Schwartz JL; Liu X; Hall MC
    J Biol Chem; 2024 Sep; 300(9):107644. PubMed ID: 39122012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The structure of the cell cycle protein Cdc14 reveals a proline-directed protein phosphatase.
    Gray CH; Good VM; Tonks NK; Barford D
    EMBO J; 2003 Jul; 22(14):3524-35. PubMed ID: 12853468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing the function of Asp128 in the lower molecular weight protein-tyrosine phosphatase-catalyzed reaction. A pre-steady-state and steady-state kinetic investigation.
    Wu L; Zhang ZY
    Biochemistry; 1996 Apr; 35(17):5426-34. PubMed ID: 8611532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Substrate Trapping Method for Identification of Direct Cdc14 Phosphatase Targets.
    Powers BL; Hall H; Charbonneau H; Hall MC
    Methods Mol Biol; 2017; 1505():119-132. PubMed ID: 27826861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transition state analysis and requirement of Asp-262 general acid/base catalyst for full activation of dual-specificity phosphatase MKP3 by extracellular regulated kinase.
    Rigas JD; Hoff RH; Rice AE; Hengge AC; Denu JM
    Biochemistry; 2001 Apr; 40(14):4398-406. PubMed ID: 11284696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The catalytic role of aspartic acid-92 in a human dual-specific protein-tyrosine-phosphatase.
    Denu JM; Zhou G; Guo Y; Dixon JE
    Biochemistry; 1995 Mar; 34(10):3396-403. PubMed ID: 7880835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and dimerization of the catalytic domain of the protein phosphatase Cdc14p, a key regulator of mitotic exit in Saccharomyces cerevisiae.
    Kobayashi J; Matsuura Y
    Protein Sci; 2017 Oct; 26(10):2105-2112. PubMed ID: 28758351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic studies of protein tyrosine phosphatases YopH and Cdc25A with m-nitrobenzyl phosphate.
    McCain DF; Grzyska PK; Wu L; Hengge AC; Zhang ZY
    Biochemistry; 2004 Jun; 43(25):8256-64. PubMed ID: 15209522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The catalytic mechanism of Cdc25A phosphatase.
    McCain DF; Catrina IE; Hengge AC; Zhang ZY
    J Biol Chem; 2002 Mar; 277(13):11190-200. PubMed ID: 11805096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional homology among human and fission yeast Cdc14 phosphatases.
    Vázquez-Novelle MD; Esteban V; Bueno A; Sacristán MP
    J Biol Chem; 2005 Aug; 280(32):29144-50. PubMed ID: 15911625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cdc14-dependent dephosphorylation of Inn1 contributes to Inn1-Cyk3 complex formation.
    Palani S; Meitinger F; Boehm ME; Lehmann WD; Pereira G
    J Cell Sci; 2012 Jul; 125(Pt 13):3091-6. PubMed ID: 22454527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site-directed mutagenesis, kinetic, and spectroscopic studies of the P-loop residues in a low molecular weight protein tyrosine phosphatase.
    Evans B; Tishmack PA; Pokalsky C; Zhang M; Van Etten RL
    Biochemistry; 1996 Oct; 35(42):13609-17. PubMed ID: 8885840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functions of the mitotic B-type cyclins CLB1, CLB2, and CLB3 at mitotic exit antagonized by the CDC14 phosphatase.
    Tzeng YW; Huang JN; Schuyler SC; Wu CH; Juang YL
    Fungal Genet Biol; 2011 Oct; 48(10):966-78. PubMed ID: 21784165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visualization of intermediate and transition-state structures in protein-tyrosine phosphatase catalysis.
    Denu JM; Lohse DL; Vijayalakshmi J; Saper MA; Dixon JE
    Proc Natl Acad Sci U S A; 1996 Mar; 93(6):2493-8. PubMed ID: 8637902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of Ime2 phosphorylation sites on Cdk1 substrates provides a mechanism to limit the effects of the phosphatase Cdc14 in meiosis.
    Holt LJ; Hutti JE; Cantley LC; Morgan DO
    Mol Cell; 2007 Mar; 25(5):689-702. PubMed ID: 17349956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global analysis of cdc14 dephosphorylation sites reveals essential regulatory role in mitosis and cytokinesis.
    Kao L; Wang YT; Chen YC; Tseng SF; Jhang JC; Chen YJ; Teng SC
    Mol Cell Proteomics; 2014 Feb; 13(2):594-605. PubMed ID: 24319056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and function of the protein tyrosine phosphatases.
    Fauman EB; Saper MA
    Trends Biochem Sci; 1996 Nov; 21(11):413-7. PubMed ID: 8987394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of CDC14: pathways and checkpoints of mitotic exit.
    Bembenek J; Yu H
    Front Biosci; 2003 Sep; 8():d1275-87. PubMed ID: 12957817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cdc14 Early Anaphase Release, FEAR, Is Limited to the Nucleus and Dispensable for Efficient Mitotic Exit.
    Yellman CM; Roeder GS
    PLoS One; 2015; 10(6):e0128604. PubMed ID: 26090959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.