BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 15128741)

  • 1. Tumor necrosis factor-alpha and CD80 modulate CD28 expression through a similar mechanism of T-cell receptor-independent inhibition of transcription.
    Lewis DE; Merched-Sauvage M; Goronzy JJ; Weyand CM; Vallejo AN
    J Biol Chem; 2004 Jul; 279(28):29130-8. PubMed ID: 15128741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CD80 and CD86 are not equivalent in their ability to induce the tyrosine phosphorylation of CD28.
    Slavik JM; Hutchcroft JE; Bierer BE
    J Biol Chem; 1999 Jan; 274(5):3116-24. PubMed ID: 9915850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Down-regulation of CD28 expression by TNF-alpha.
    Bryl E; Vallejo AN; Weyand CM; Goronzy JJ
    J Immunol; 2001 Sep; 167(6):3231-8. PubMed ID: 11544310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CD28 loss in senescent CD4+ T cells: reversal by interleukin-12 stimulation.
    Warrington KJ; Vallejo AN; Weyand CM; Goronzy JJ
    Blood; 2003 May; 101(9):3543-9. PubMed ID: 12506015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenotypic characteristics of aged CD4
    Suarez-Álvarez B; Rodríguez RM; Schlangen K; Raneros AB; Márquez-Kisinousky L; Fernández AF; Díaz-Corte C; Aransay AM; López-Larrea C
    Aging Cell; 2017 Apr; 16(2):293-303. PubMed ID: 28026094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ expression of B7 and CD28 receptor families in human malignant melanoma: relevance for T-cell-mediated anti-tumor immunity.
    Denfeld RW; Dietrich A; Wuttig C; Tanczos E; Weiss JM; Vanscheidt W; Schöpf E; Simon JC
    Int J Cancer; 1995 Jul; 62(3):259-65. PubMed ID: 7543078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The insulin-like growth factor-I receptor is regulated by CD28 and protects activated T cells from apoptosis.
    Walsh PT; O'Connor R
    Eur J Immunol; 2000 Apr; 30(4):1010-8. PubMed ID: 10760788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular basis for the loss of CD28 expression in senescent T cells.
    Vallejo AN; Bryl E; Klarskov K; Naylor S; Weyand CM; Goronzy JJ
    J Biol Chem; 2002 Dec; 277(49):46940-9. PubMed ID: 12324461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validity of the two-signal model for activation of CD28-deficient T lymphocytes: quantitative characterization of an alternative costimulatory function of dendritic cells.
    Cassell DJ
    Scand J Immunol; 2001 Apr; 53(4):346-56. PubMed ID: 11285114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional expression of human CD28 in murine T cell hybridomas.
    Couez D; Pagès F; Ragueneau M; Nunès J; Klasen S; Mawas C; Truneh A; Olive D
    Mol Immunol; 1994 Jan; 31(1):47-57. PubMed ID: 8302298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CD28-CD80/86 and CD40-CD40L Interactions Promote Thymic Tolerance by Regulating Medullary Epithelial Cell and Thymocyte Development.
    Williams JA; Tai X; Hodes RJ
    Crit Rev Immunol; 2015; 35(1):59-76. PubMed ID: 25746048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chimeric co-stimulatory molecules that selectively act through CD28 or CTLA-4 on human T cells.
    Lazetic S; Leong SR; Chang JC; Ong R; Dawes G; Punnonen J
    J Biol Chem; 2002 Oct; 277(41):38660-8. PubMed ID: 12167647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning and characterization of ALX, an adaptor downstream of CD28.
    Greene TA; Powell P; Nzerem C; Shapiro MJ; Shapiro VS
    J Biol Chem; 2003 Nov; 278(46):45128-34. PubMed ID: 12960172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of the CD28-CD80 co-stimulation signal by a CD28-binding affibody ligand developed by combinatorial protein engineering.
    Sandström K; Xu Z; Forsberg G; Nygren PA
    Protein Eng; 2003 Sep; 16(9):691-7. PubMed ID: 14560055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coordinate transactivation of the interleukin-2 CD28 response element by c-Rel and ATF-1/CREB2.
    Butscher WG; Powers C; Olive M; Vinson C; Gardner K
    J Biol Chem; 1998 Jan; 273(1):552-60. PubMed ID: 9417115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antigen-independent Th2 cell differentiation by stimulation of CD28: regulation via IL-4 gene expression and mitogen-activated protein kinase activation.
    Skapenko A; Lipsky PE; Kraetsch HG; Kalden JR; Schulze-Koops H
    J Immunol; 2001 Apr; 166(7):4283-92. PubMed ID: 11254680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immunosuppression through blockade of CD28:B7-mediated costimulatory signals.
    Judge TA; Tang A; Turka LA
    Immunol Res; 1996; 15(1):38-49. PubMed ID: 8739564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Limited density of an antigen presented by RMA-S cells requires B7-1/CD28 signaling to enhance T-cell immunity at the effector phase.
    Li XL; Sluijter M; Doorduijn EM; Kale SP; McFerrin H; Liu YY; Li Y; Mottamal M; Yao X; Du F; Gu B; Hoang K; Nguyen YH; Taylor N; Stephens CR; van Hall T; Zhang QJ
    PLoS One; 2014; 9(11):e108192. PubMed ID: 25383875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of T cell receptor- and CD28-induced tyrosine phosphorylation of the focal adhesion tyrosine kinases Pyk2 and Fak by protein kinase C. A role for protein tyrosine phosphatases.
    Tsuchida M; Manthei ER; Alam T; Knechtle SJ; Hamawy MM
    J Biol Chem; 2000 Jan; 275(2):1344-50. PubMed ID: 10625683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. B-cell surface antigen B7 provides a costimulatory signal that induces T cells to proliferate and secrete interleukin 2.
    Gimmi CD; Freeman GJ; Gribben JG; Sugita K; Freedman AS; Morimoto C; Nadler LM
    Proc Natl Acad Sci U S A; 1991 Aug; 88(15):6575-9. PubMed ID: 1650475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.