BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 15128752)

  • 1. Firing properties and connectivity of neurons in the rat lateral central nucleus of the amygdala.
    Lopez de Armentia M; Sah P
    J Neurophysiol; 2004 Sep; 92(3):1285-94. PubMed ID: 15128752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological role of calcium-activated potassium currents in the rat lateral amygdala.
    Faber ES; Sah P
    J Neurosci; 2002 Mar; 22(5):1618-28. PubMed ID: 11880492
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Competition between calcium-activated K+ channels determines cholinergic action on firing properties of basolateral amygdala projection neurons.
    Power JM; Sah P
    J Neurosci; 2008 Mar; 28(12):3209-20. PubMed ID: 18354024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dopamine modulates excitability of basolateral amygdala neurons in vitro.
    Kröner S; Rosenkranz JA; Grace AA; Barrionuevo G
    J Neurophysiol; 2005 Mar; 93(3):1598-610. PubMed ID: 15537813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphological and electrophysiological properties of principal neurons in the rat lateral amygdala in vitro.
    Faber ES; Callister RJ; Sah P
    J Neurophysiol; 2001 Feb; 85(2):714-23. PubMed ID: 11160506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Independent roles of calcium and voltage-dependent potassium currents in controlling spike frequency adaptation in lateral amygdala pyramidal neurons.
    Faber ES; Sah P
    Eur J Neurosci; 2005 Oct; 22(7):1627-35. PubMed ID: 16197503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship between afterhyperpolarization profiles and the regularity of spontaneous firings in rat medial vestibular nucleus neurons.
    Saito Y; Takazawa T; Ozawa S
    Eur J Neurosci; 2008 Jul; 28(2):288-98. PubMed ID: 18702700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of voltage-gated K+ currents in mediating the regular-spiking phenotype of callosal-projecting rat visual cortical neurons.
    Locke RE; Nerbonne JM
    J Neurophysiol; 1997 Nov; 78(5):2321-35. PubMed ID: 9356385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of apamin-sensitive SK channels to the firing precision but not to the slow afterhyperpolarization and spike frequency adaptation in snail neurons.
    Vatanparast J; Janahmadi M
    Brain Res; 2009 Feb; 1255():57-66. PubMed ID: 19100724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A serotonergic discrimination favoring synaptic inputs that accompany robust spike firing in lateral amygdala neurons.
    Yamamoto R; Ueta Y; Sugai T; Kato N
    Neuroscience; 2012 Sep; 220():119-30. PubMed ID: 22698688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Electrophysiological properties of inhibitory neurones in cultured dissociated hippocampal cells].
    Moskaliuk AO; Kolodin IuO; Kravchenko MO; Fedulova SA; Veselovs'kyĭ MS
    Fiziol Zh (1994); 2004; 50(4):42-9. PubMed ID: 15460026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiological properties of central medial and central lateral amygdala neurons.
    Martina M; Royer S; Paré D
    J Neurophysiol; 1999 Oct; 82(4):1843-54. PubMed ID: 10515973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of neurons in the rat central nucleus of the amygdala: cellular physiology, morphology, and opioid sensitivity.
    Chieng BC; Christie MJ; Osborne PB
    J Comp Neurol; 2006 Aug; 497(6):910-27. PubMed ID: 16802333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Ca2+-independent slow afterhyperpolarization in substantia nigra compacta neurons.
    Nedergaard S
    Neuroscience; 2004; 125(4):841-52. PubMed ID: 15120845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suprachiasmatic nucleus communicates with anterior thalamic paraventricular nucleus neurons via rapid glutamatergic and gabaergic neurotransmission: state-dependent response patterns observed in vitro.
    Zhang L; Kolaj M; Renaud LP
    Neuroscience; 2006 Sep; 141(4):2059-66. PubMed ID: 16797851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GABAergic interneurons in the mouse lateral amygdala: a classification study.
    Sosulina L; Graebenitz S; Pape HC
    J Neurophysiol; 2010 Aug; 104(2):617-26. PubMed ID: 20484532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Orexin-induced modulation of state-dependent intrinsic properties in thalamic paraventricular nucleus neurons attenuates action potential patterning and frequency.
    Kolaj M; Doroshenko P; Yan Cao X; Coderre E; Renaud LP
    Neuroscience; 2007 Jul; 147(4):1066-75. PubMed ID: 17600629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synaptic plasticity in the amygdala in a visceral pain model in rats.
    Han JS; Neugebauer V
    Neurosci Lett; 2004 May; 361(1-3):254-7. PubMed ID: 15135941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo kindling does not alter afterhyperpolarizations (AHPs) following action potential firing in vitro in basolateral amygdala neurons.
    Asprodini EK; Rainnie DG; Anderson AC; Shinnick-Gallagher P
    Brain Res; 1992 Aug; 588(2):329-34. PubMed ID: 1393586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Altered inhibition in lateral amygdala networks in a rat model of temporal lobe epilepsy.
    Benini R; Avoli M
    J Neurophysiol; 2006 Apr; 95(4):2143-54. PubMed ID: 16381802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.