These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 15128752)

  • 21. Threshold firing frequency-current relationships of neurons in rat somatosensory cortex: type 1 and type 2 dynamics.
    Tateno T; Harsch A; Robinson HP
    J Neurophysiol; 2004 Oct; 92(4):2283-94. PubMed ID: 15381746
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Heterogeneity of rat corticospinal neurons.
    Tseng GF; Prince DA
    J Comp Neurol; 1993 Sep; 335(1):92-108. PubMed ID: 8408775
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ca2+-activated K+ (BK) channel inactivation contributes to spike broadening during repetitive firing in the rat lateral amygdala.
    Faber ES; Sah P
    J Physiol; 2003 Oct; 552(Pt 2):483-97. PubMed ID: 14561831
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synaptic properties and postsynaptic opioid effects in rat central amygdala neurons.
    Zhu W; Pan ZZ
    Neuroscience; 2004; 127(4):871-9. PubMed ID: 15312899
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cellular properties of lateral spinal nucleus neurons in the rat L6-S1 spinal cord.
    Jiang MC; Liu L; Gebhart GF
    J Neurophysiol; 1999 Jun; 81(6):3078-86. PubMed ID: 10368422
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Factors affecting slow regular firing in the suprachiasmatic nucleus in vitro.
    Thomson AM; West DC
    J Biol Rhythms; 1990; 5(1):59-75. PubMed ID: 2133120
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synaptic and network consequences of monosynaptic nociceptive inputs of parabrachial nucleus origin in the central amygdala.
    Sugimura YK; Takahashi Y; Watabe AM; Kato F
    J Neurophysiol; 2016 Jun; 115(6):2721-39. PubMed ID: 26888105
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The central nucleus of the rat amygdala: in vitro intracellular recordings.
    Schiess MC; Asprodini EK; Rainnie DG; Shinnick-Gallagher P
    Brain Res; 1993 Feb; 604(1-2):283-97. PubMed ID: 8457856
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Physiological properties of central amygdala neurons: species differences.
    Dumont EC; Martina M; Samson RD; Drolet G; Paré D
    Eur J Neurosci; 2002 Feb; 15(3):545-52. PubMed ID: 11876782
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The ontogeny of repetitive firing and its modulation by norepinephrine in rat neocortical neurons.
    Lorenzon NM; Foehring RC
    Brain Res Dev Brain Res; 1993 Jun; 73(2):213-23. PubMed ID: 8394788
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrophysiological and morphological properties of rat basolateral amygdaloid neurons in vitro.
    Washburn MS; Moises HC
    J Neurosci; 1992 Oct; 12(10):4066-79. PubMed ID: 1403101
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Actions of isoproterenol on amygdalar neurons in vitro.
    Huang CC; Tsai JJ; Gean PW
    Chin J Physiol; 1994; 37(2):73-8. PubMed ID: 7875028
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spike-timing precision and neuronal synchrony are enhanced by an interaction between synaptic inhibition and membrane oscillations in the amygdala.
    Ryan SJ; Ehrlich DE; Jasnow AM; Daftary S; Madsen TE; Rainnie DG
    PLoS One; 2012; 7(4):e35320. PubMed ID: 22563382
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The fear circuit revisited: contributions of the basal amygdala nuclei to conditioned fear.
    Amano T; Duvarci S; Popa D; Paré D
    J Neurosci; 2011 Oct; 31(43):15481-9. PubMed ID: 22031894
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The transient potassium current, the A-current, is involved in spike frequency adaptation in rat amygdala neurons.
    Gean PW; Shinnick-Gallagher P
    Brain Res; 1989 Feb; 480(1-2):160-9. PubMed ID: 2540874
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Wiring Specificity and Synaptic Diversity in the Mouse Lateral Central Amygdala.
    Hou WH; Kuo N; Fang GW; Huang HS; Wu KP; Zimmer A; Cheng JK; Lien CC
    J Neurosci; 2016 Apr; 36(16):4549-63. PubMed ID: 27098697
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Involvement of amygdala networks in epileptiform synchronization in vitro.
    Benini R; D'Antuono M; Pralong E; Avoli M
    Neuroscience; 2003; 120(1):75-84. PubMed ID: 12849742
    [TBL] [Abstract][Full Text] [Related]  

  • 38. L-type calcium channel contributions to intrinsic excitability and synaptic activity during basolateral amygdala postnatal development.
    Zhang Y; Garcia E; Sack AS; Snutch TP
    J Neurophysiol; 2020 Mar; 123(3):1216-1235. PubMed ID: 31967931
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrophysiological study of the response of medial prefrontal cortex neurons to stimulation of the basolateral nucleus of the amygdala in the rat.
    Pérez-Jaranay JM; Vives F
    Brain Res; 1991 Nov; 564(1):97-101. PubMed ID: 1777825
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vitro characterization of cell-level neurophysiological diversity in the rostral nucleus reuniens of adult mice.
    Walsh DA; Brown JT; Randall AD
    J Physiol; 2017 Jun; 595(11):3549-3572. PubMed ID: 28295330
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.