BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 15129732)

  • 61. Mitochondria induce oxidative stress, generation of reactive oxygen species and redox state unbalance of the eye lens leading to human cataract formation: disruption of redox lens organization by phospholipid hydroperoxides as a common basis for cataract disease.
    Babizhayev MA
    Cell Biochem Funct; 2011 Apr; 29(3):183-206. PubMed ID: 21381059
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Prooxidant-antioxidant balance, advanced oxidation protein products and lipid peroxidation in Serbian patients with Parkinson's disease.
    Miletić J; Drakulić D; Pejić S; Petković M; Ilić TV; Miljković M; Stefanović A; Prostran M; Stojanov M
    Int J Neurosci; 2018 Jul; 128(7):600-607. PubMed ID: 29148896
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Electrophilic aldehyde products of lipid peroxidation selectively adduct to heat shock protein 90 and arylsulfatase A in stallion spermatozoa.
    Hall SE; Aitken RJ; Nixon B; Smith ND; Gibb Z
    Biol Reprod; 2017 Jan; 96(1):107-121. PubMed ID: 28395341
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Oxidative inactivation of reduced NADP-generating enzymes in E. coli: iron-dependent inactivation with affinity cleavage of NADP-isocitrate dehydrogenase.
    Murakami K; Tsubouchi R; Fukayama M; Ogawa T; Yoshino M
    Arch Microbiol; 2006 Nov; 186(5):385-92. PubMed ID: 16897033
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Regulation of singlet oxygen-induced apoptosis by cytosolic NADP+-dependent isocitrate dehydrogenase.
    Kim SY; Lee SM; Tak JK; Choi KS; Kwon TK; Park JW
    Mol Cell Biochem; 2007 Aug; 302(1-2):27-34. PubMed ID: 17646934
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Isocitrate dehydrogenase activity and its regulation by estradiol in tissues of rats of various ages.
    Yadav RN
    Cell Biochem Funct; 1988 Jul; 6(3):197-202. PubMed ID: 3409480
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Lipid peroxidation-derived modification and its effect on the activity of glutathione peroxidase 1.
    Lee SH; Takahashi K; Hatakawa Y; Oe T
    Free Radic Biol Med; 2023 Nov; 208():252-259. PubMed ID: 37549755
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Formation of the aldehydic choline glycerophospholipids in human red blood cell membrane peroxidized with an azo initiator.
    Kawai Y; Ogamo A; Nakagawa Y
    J Biochem; 1999 Jul; 126(1):115-20. PubMed ID: 10393328
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Regulation of mitochondrial NADP-isocitrate dehydrogenase in rat heart during ischemia.
    Popova T; Pinheiro de Carvalho MA; Matasova L; Medvedeva L
    Mol Cell Biochem; 2007 Jan; 294(1-2):97-105. PubMed ID: 16823514
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Mitochondrial NADP+-dependent isocitrate dehydrogenase protects cadmium-induced apoptosis.
    Kil IS; Shin SW; Yeo HS; Lee YS; Park JW
    Mol Pharmacol; 2006 Sep; 70(3):1053-61. PubMed ID: 16785314
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Identification of cardiac oxidoreductase(s) involved in the metabolism of the lipid peroxidation-derived aldehyde-4-hydroxynonenal.
    Srivastava S; Chandra A; Ansari NH; Srivastava SK; Bhatnagar A
    Biochem J; 1998 Feb; 329 ( Pt 3)(Pt 3):469-75. PubMed ID: 9445372
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Modification of NAD-dependent isocitrate dehydrogenase by the 2',3'-dialdehyde derivatives of NAD, NADH, NADP, and NADPH.
    Saha A; Colman RF
    Arch Biochem Biophys; 1988 Aug; 264(2):665-77. PubMed ID: 3401017
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Lipid peroxidation products inhibit dopamine catabolism yielding aberrant levels of a reactive intermediate.
    Rees JN; Florang VR; Anderson DG; Doorn JA
    Chem Res Toxicol; 2007 Oct; 20(10):1536-42. PubMed ID: 17887726
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Cuscuta chinensis seeds water extraction protecting murine osteoblastic MC3T3-E1 cells against tertiary butyl hydroperoxide induced injury.
    Gao JM; Li R; Zhang L; Jia LL; Ying XX; Dou DQ; Li JC; Li HB
    J Ethnopharmacol; 2013 Jul; 148(2):587-95. PubMed ID: 23702038
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Long-term feeding of dietary oils alters lipid metabolism, lipid peroxidation, and antioxidant enzyme activities in a teleost (Anabas testudineus Bloch).
    Varghese S; Oommen OV
    Lipids; 2000 Jul; 35(7):757-62. PubMed ID: 10941876
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The influence of lipid peroxidation products (malondialdehyde, 4-hydroxynonenal) on xanthine oxidoreductase prepared from rat liver.
    Haberland A; Schütz AK; Schimke I
    Biochem Pharmacol; 1992 May; 43(10):2117-20. PubMed ID: 1599498
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Silencing of cytosolic NADP(+)-dependent isocitrate dehydrogenase by small interfering RNA enhances the sensitivity of HeLa cells toward staurosporine.
    Lee SM; Park SY; Shin SW; Kil IS; Yang ES; Park JW
    Free Radic Res; 2009 Feb; 43(2):165-73. PubMed ID: 19204869
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The involvement of superoxide and iron ions in the NADPH-dependent lipid peroxidation in human placental mitochondria.
    Klimek J
    Biochim Biophys Acta; 1988 Jan; 958(1):31-9. PubMed ID: 2825815
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Lipoxidation products as biomarkers of oxidative damage to proteins during lipid peroxidation reactions.
    Requena JR; Fu MX; Ahmed MU; Jenkins AJ; Lyons TJ; Thorpe SR
    Nephrol Dial Transplant; 1996; 11 Suppl 5():48-53. PubMed ID: 9044307
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Pleiotropic effects of 4-hydroxynonenal on oxidative burst and phagocytosis in neutrophils.
    Chacko BK; Wall SB; Kramer PA; Ravi S; Mitchell T; Johnson MS; Wilson L; Barnes S; Landar A; Darley-Usmar VM
    Redox Biol; 2016 Oct; 9():57-66. PubMed ID: 27393890
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.