BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 15130478)

  • 1. Structure of the N-terminal domain of Escherichia coli glutamine synthetase adenylyltransferase.
    Xu Y; Zhang R; Joachimiak A; Carr PD; Huber T; Vasudevan SG; Ollis DL
    Structure; 2004 May; 12(5):861-9. PubMed ID: 15130478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure of the adenylylation domain of E. coli glutamine synthetase adenylyl transferase: evidence for gene duplication and evolution of a new active site.
    Xu Y; Carr PD; Vasudevan SG; Ollis DL
    J Mol Biol; 2010 Feb; 396(3):773-84. PubMed ID: 20026075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-function analysis of glutamine synthetase adenylyltransferase (ATase, EC 2.7.7.49) of Escherichia coli.
    Jiang P; Pioszak AA; Ninfa AJ
    Biochemistry; 2007 Apr; 46(13):4117-32. PubMed ID: 17355124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The domains carrying the opposing activities in adenylyltransferase are separated by a central regulatory domain.
    Clancy P; Xu Y; van Heeswijk WC; Vasudevan SG; Ollis DL
    FEBS J; 2007 Jun; 274(11):2865-77. PubMed ID: 17488285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. YbdK is a carboxylate-amine ligase with a gamma-glutamyl:Cysteine ligase activity: crystal structure and enzymatic assays.
    Lehmann C; Doseeva V; Pullalarevu S; Krajewski W; Howard A; Herzberg O
    Proteins; 2004 Aug; 56(2):376-83. PubMed ID: 15211520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structures of mammalian glutamine synthetases illustrate substrate-induced conformational changes and provide opportunities for drug and herbicide design.
    Krajewski WW; Collins R; Holmberg-Schiavone L; Jones TA; Karlberg T; Mowbray SL
    J Mol Biol; 2008 Jan; 375(1):217-28. PubMed ID: 18005987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. X-ray crystal structure of glycinamide ribonucleotide synthetase from Escherichia coli.
    Wang W; Kappock TJ; Stubbe J; Ealick SE
    Biochemistry; 1998 Nov; 37(45):15647-62. PubMed ID: 9843369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A source of ultrasensitivity in the glutamine response of the bicyclic cascade system controlling glutamine synthetase adenylylation state and activity in Escherichia coli.
    Jiang P; Ninfa AJ
    Biochemistry; 2011 Dec; 50(50):10929-40. PubMed ID: 22085244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of Saccharomyces cerevisiae glutamine synthetase Gln1 suggests a nanotube-like supramolecular assembly.
    He YX; Gui L; Liu YZ; Du Y; Zhou Y; Li P; Zhou CZ
    Proteins; 2009 Jul; 76(1):249-54. PubMed ID: 19322816
    [No Abstract]   [Full Text] [Related]  

  • 10. Conformational changes in a plant ketol-acid reductoisomerase upon Mg(2+) and NADPH binding as revealed by two crystal structures.
    Leung EW; Guddat LW
    J Mol Biol; 2009 May; 389(1):167-82. PubMed ID: 19362563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reversible adenylylation of glutamine synthetase is dynamically counterbalanced during steady-state growth of Escherichia coli.
    Okano H; Hwa T; Lenz P; Yan D
    J Mol Biol; 2010 Dec; 404(3):522-36. PubMed ID: 20887734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structures of Streptococcus pneumoniae N-acetylglucosamine-1-phosphate uridyltransferase, GlmU, in apo form at 2.33 A resolution and in complex with UDP-N-acetylglucosamine and Mg(2+) at 1.96 A resolution.
    Kostrewa D; D'Arcy A; Takacs B; Kamber M
    J Mol Biol; 2001 Jan; 305(2):279-89. PubMed ID: 11124906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure and structure-based mutational analyses of RNase HIII from Bacillus stearothermophilus: a new type 2 RNase H with TBP-like substrate-binding domain at the N terminus.
    Chon H; Matsumura H; Koga Y; Takano K; Kanaya S
    J Mol Biol; 2006 Feb; 356(1):165-78. PubMed ID: 16343535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structures of the conserved tRNA-modifying enzyme GidA: implications for its interaction with MnmE and substrate.
    Meyer S; Scrima A; Versées W; Wittinghofer A
    J Mol Biol; 2008 Jul; 380(3):532-47. PubMed ID: 18565343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-resolution structures of Escherichia coli cDsbD in different redox states: A combined crystallographic, biochemical and computational study.
    Stirnimann CU; Rozhkova A; Grauschopf U; Böckmann RA; Glockshuber R; Capitani G; Grütter MG
    J Mol Biol; 2006 May; 358(3):829-45. PubMed ID: 16545842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The two opposing activities of adenylyl transferase reside in distinct homologous domains, with intramolecular signal transduction.
    Jaggi R; van Heeswijk WC; Westerhoff HV; Ollis DL; Vasudevan SG
    EMBO J; 1997 Sep; 16(18):5562-71. PubMed ID: 9312015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of the glutamine synthetase adenylyltransferase of Azospirillum brasilense.
    Van Dommelen A; Spaepen S; Vanderleyden J
    Res Microbiol; 2009 Apr; 160(3):205-12. PubMed ID: 19366628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of Escherichia coli RNase D, an exoribonuclease involved in structured RNA processing.
    Zuo Y; Wang Y; Malhotra A
    Structure; 2005 Jul; 13(7):973-84. PubMed ID: 16004870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural analysis of FAD synthetase from Corynebacterium ammoniagenes.
    Frago S; Martínez-Júlvez M; Serrano A; Medina M
    BMC Microbiol; 2008 Sep; 8():160. PubMed ID: 18811972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzymological characterization of the signal-transducing uridylyltransferase/uridylyl-removing enzyme (EC 2.7.7.59) of Escherichia coli and its interaction with the PII protein.
    Jiang P; Peliska JA; Ninfa AJ
    Biochemistry; 1998 Sep; 37(37):12782-94. PubMed ID: 9737855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.