BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 15130494)

  • 1. Negative regulation of midline vascular development by the notochord.
    Reese DE; Hall CE; Mikawa T
    Dev Cell; 2004 May; 6(5):699-708. PubMed ID: 15130494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Notochord-derived BMP antagonists inhibit endothelial cell generation and network formation.
    Bressan M; Davis P; Timmer J; Herzlinger D; Mikawa T
    Dev Biol; 2009 Feb; 326(1):101-11. PubMed ID: 19041859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An anteroposterior wave of vascular inhibitor downregulation signals aortae fusion along the embryonic midline axis.
    Garriock RJ; Czeisler C; Ishii Y; Navetta AM; Mikawa T
    Development; 2010 Nov; 137(21):3697-706. PubMed ID: 20940228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BMP4 and noggin control embryonic blood vessel formation by antagonistic regulation of VEGFR-2 (Quek1) expression.
    Nimmagadda S; Geetha Loganathan P; Huang R; Scaal M; Schmidt C; Christ B
    Dev Biol; 2005 Apr; 280(1):100-10. PubMed ID: 15766751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mesoderm patterning and somite formation during node regression: differential effects of chordin and noggin.
    Streit A; Stern CD
    Mech Dev; 1999 Jul; 85(1-2):85-96. PubMed ID: 10415349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential patterning of ventral midline cells by axial mesoderm is regulated by BMP7 and chordin.
    Dale K; Sattar N; Heemskerk J; Clarke JD; Placzek M; Dodd J
    Development; 1999 Jan; 126(2):397-408. PubMed ID: 9847252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dorsal aorta formation: separate origins, lateral-to-medial migration, and remodeling.
    Sato Y
    Dev Growth Differ; 2013 Jan; 55(1):113-29. PubMed ID: 23294360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The neural tube patterns vessels developmentally using the VEGF signaling pathway.
    Hogan KA; Ambler CA; Chapman DL; Bautch VL
    Development; 2004 Apr; 131(7):1503-13. PubMed ID: 14998923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integration of repulsive guidance cues generates avascular zones that shape mammalian blood vessels.
    Meadows SM; Fletcher PJ; Moran C; Xu K; Neufeld G; Chauvet S; Mann F; Krieg PA; Cleaver O
    Circ Res; 2012 Jan; 110(1):34-46. PubMed ID: 22076636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FoxA4 favours notochord formation by inhibiting contiguous mesodermal fates and restricts anterior neural development in Xenopus embryos.
    Murgan S; Castro Colabianchi AM; Monti RJ; Boyadjián López LE; Aguirre CE; Stivala EG; Carrasco AE; López SL
    PLoS One; 2014; 9(10):e110559. PubMed ID: 25343614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chick CFC controls Lefty1 expression in the embryonic midline and nodal expression in the lateral plate.
    Schlange T; Schnipkoweit I; Andrée B; Ebert A; Zile MH; Arnold HH; Brand T
    Dev Biol; 2001 Jun; 234(2):376-89. PubMed ID: 11397007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BMP antagonism is required in both the node and lateral plate mesoderm for mammalian left-right axis establishment.
    Mine N; Anderson RM; Klingensmith J
    Development; 2008 Aug; 135(14):2425-34. PubMed ID: 18550712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Axial structures control laterality in the distribution pattern of endothelial cells.
    Klessinger S; Christ B
    Anat Embryol (Berl); 1996 Apr; 193(4):319-30. PubMed ID: 8694268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A direct role for Wnt8 in ventrolateral mesoderm patterning.
    Baker KD; Ramel MC; Lekven AC
    Dev Dyn; 2010 Nov; 239(11):2828-36. PubMed ID: 20845427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of chick axial mesoderm: specification of prechordal mesoderm by anterior endoderm-derived TGFbeta family signalling.
    Vesque C; Ellis S; Lee A; Szabo M; Thomas P; Beddington R; Placzek M
    Development; 2000 Jul; 127(13):2795-809. PubMed ID: 10851126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic analysis of vascular morphogenesis using transgenic quail embryos.
    Sato Y; Poynter G; Huss D; Filla MB; Czirok A; Rongish BJ; Little CD; Fraser SE; Lansford R
    PLoS One; 2010 Sep; 5(9):e12674. PubMed ID: 20856866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vascular endothelial growth factor: a regulator of vascular morphogenesis in the Japanese quail embryo.
    Finkelstein EB; Poole TJ
    Anat Rec A Discov Mol Cell Evol Biol; 2003 May; 272(1):403-14. PubMed ID: 12704698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neurovascular congruence results from a shared patterning mechanism that utilizes Semaphorin3A and Neuropilin-1.
    Bates D; Taylor GI; Minichiello J; Farlie P; Cichowitz A; Watson N; Klagsbrun M; Mamluk R; Newgreen DF
    Dev Biol; 2003 Mar; 255(1):77-98. PubMed ID: 12618135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone morphogenetic protein 1 regulates dorsal-ventral patterning in early Xenopus embryos by degrading chordin, a BMP4 antagonist.
    Wardle FC; Welch JV; Dale L
    Mech Dev; 1999 Aug; 86(1-2):75-85. PubMed ID: 10446267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neurocan in the embryonic avian heart and vasculature.
    Mishima N; Hoffman S
    Anat Rec A Discov Mol Cell Evol Biol; 2003 Jun; 272(2):556-62. PubMed ID: 12740950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.