These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 15130601)

  • 1. Chloramphenicol succinate, a competitive substrate and inhibitor of succinate dehydrogenase: possible reason for its toxicity.
    Ambekar CS; Lee JS; Cheung BM; Chan LC; Liang R; Kumana CR
    Toxicol In Vitro; 2004 Aug; 18(4):441-7. PubMed ID: 15130601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolism of chloramphenicol succinate in human bone marrow.
    Ambekar CS; Cheung B; Lee J; Chan LC; Liang R; Kumana CR
    Eur J Clin Pharmacol; 2000 Aug; 56(5):405-9. PubMed ID: 11009050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [The effect of fluoride ion on the activity of succinate dehydrogenase isolated from the pig's renal cortex].
    Stachowska E
    Ann Acad Med Stetin; 1997; 43():25-40. PubMed ID: 9471920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [On the inhibitory effect of chloramphenicol on mitochondrial protein synthesis as a possible cause of its selective toxic side effects (author's transl)].
    Summ HD; Draeger E; von Wasielewski E
    Arzneimittelforschung; 1976; 26(1):28-32. PubMed ID: 947169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Curcumin ameliorates aflatoxin-induced changes in SDH and ATPase activities in liver and kidney of mice.
    Verma RJ; Chakraborty BS; Patel C; Mathuria N
    Acta Pol Pharm; 2008; 65(4):415-9. PubMed ID: 19051581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human liver microsomal reduction of pyrrolizidine alkaloid N-oxides to form the corresponding carcinogenic parent alkaloid.
    Wang YP; Yan J; Fu PP; Chou MW
    Toxicol Lett; 2005 Mar; 155(3):411-20. PubMed ID: 15649625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The differential JunB responses to inhibition of succinate dehydrogenase in rat hippocampus and liver.
    Przybyla-Zawislak BD; Kim CS; Ali SF; Slikker W; Binienda ZK
    Neurosci Lett; 2005 Jun; 381(3):354-7. PubMed ID: 15896499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Androgenic control of hepatic mitochondrial metabolism in an apoda, Gegenophis carnosus (Beddome).
    Sutharama KK; Peter MC; Oommen OV
    Indian J Exp Biol; 1991 Nov; 29(11):1027-30. PubMed ID: 1816079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect in vitro of benthiocarb on rat brain succinate dehydrogenase.
    Reddy GR; Babu GR; Reddanna P; Chetty CS
    Biochem Int; 1990; 20(4):711-4. PubMed ID: 2353920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. L-carnitine and neuroprotection in the animal model of mitochondrial dysfunction.
    Binienda Z; Przybyla-Zawislak B; Virmani A; Schmued L
    Ann N Y Acad Sci; 2005 Aug; 1053():174-82. PubMed ID: 16179521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of ruthenium complexes on the activities of succinate dehydrogenase and cytochrome oxidase.
    Victor EG; Zanette F; Aguiar MR; Aguiar CS; Cardoso DC; Cristiano MP; Streck EL; Paula MM
    Chem Biol Interact; 2007 Oct; 170(1):59-66. PubMed ID: 17707358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the myelotoxicity of chloramphenicol succinate in the B6C3F1 mouse.
    Turton JA; Fagg R; Sones WR; Williams TC; Andrews CM
    Int J Exp Pathol; 2006 Apr; 87(2):101-12. PubMed ID: 16623754
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protective effect of ursodeoxycholic acid on liver mitochondrial function in rats with alloxan-induced diabetes: link with oxidative stress.
    Lukivskaya O; Patsenker E; Buko VU
    Life Sci; 2007 Jun; 80(26):2397-402. PubMed ID: 17512017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Papyriferic acid, an antifeedant triterpene from birch trees, inhibits succinate dehydrogenase from liver mitochondria.
    McLean S; Richards SM; Cover SL; Brandon S; Davies NW; Bryant JP; Clausen TP
    J Chem Ecol; 2009 Oct; 35(10):1252-61. PubMed ID: 19838755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Whole body hyperthermia reduces oxidative stress in the striatum of rats in an animal model of mitochondrial toxicity with 3-nitropropionic acid.
    Medina-Navarro R; Guerrero-Linares I
    Int J Hyperthermia; 2009 Jun; 25(4):280-8. PubMed ID: 19440936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aerobic nitroreduction of dehydrochloramphenicol by bone marrow.
    Isildar M; Abou-Khalil WH; Jimenez JJ; Abou-Khalil S; Yunis AA
    Toxicol Appl Pharmacol; 1988 Jun; 94(2):305-10. PubMed ID: 3388427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Haemotoxicity of chloramphenicol succinate in the CD-1 mouse and Wistar Hanover rat.
    Turton JA; Yallop D; Andrews CM; Fagg R; York M; Williams TC
    Hum Exp Toxicol; 1999 Sep; 18(9):566-76. PubMed ID: 10523871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies on the haemotoxicity of chloramphenicol succinate in the Dunkin Hartley guinea pig.
    Turton JA; Andrews CM; Havard AC; Williams TC
    Int J Exp Pathol; 2002 Oct; 83(5):225-38. PubMed ID: 12641819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Mechanism of the effect of varying saturation of the rat organism with thiamine on membrane-bound succinate dehydrogenase activity].
    Sevost'ianov AN
    Vopr Pitan; 1981; (1):39-41. PubMed ID: 7222551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolism of propionate by sheep-liver mitochondria. Evidence for rate control by a specific succinate oxidase.
    Smith RM; Russell GR
    Biochem J; 1967 Aug; 104(2):460-72. PubMed ID: 6048788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.