These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 15130619)
1. Control and consideration of wavefront aberrometers. Montés-Micó R; Muñoz G; Alió JL J Cataract Refract Surg; 2004 May; 30(5):942. PubMed ID: 15130619 [No Abstract] [Full Text] [Related]
2. Comparison of higher-order wavefront aberrations with 3 aberrometers. Liang CL; Juo SH; Chang CJ J Cataract Refract Surg; 2005 Nov; 31(11):2153-6. PubMed ID: 16412931 [TBL] [Abstract][Full Text] [Related]
3. Diagnostic use of ocular wavefront sensing. Carones F Ophthalmol Clin North Am; 2004 Jun; 17(2):129-33, v. PubMed ID: 15207556 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of a clinical aberrometer for lower-order accuracy and repeatability, higher-order repeatability, and instrument myopia. Salmon TO; van de Pol C Optometry; 2005 Aug; 76(8):461-72. PubMed ID: 16150413 [TBL] [Abstract][Full Text] [Related]
7. [Agreement measurement of ocular wavefront aberrations with three different aberrometers]. Chen X; Lu Y; Dai JH; Wang L Zhonghua Yan Ke Za Zhi; 2009 Apr; 45(4):332-7. PubMed ID: 19575966 [TBL] [Abstract][Full Text] [Related]
9. Corneal and refractive astigmatism in adults: a power vectors analysis. Remón L; Benlloch J; Furlan WD Optom Vis Sci; 2009 Oct; 86(10):1182-6. PubMed ID: 19741560 [TBL] [Abstract][Full Text] [Related]
10. The optics of wavefront sensing. Thibos LN Ophthalmol Clin North Am; 2004 Jun; 17(2):111-7, v. PubMed ID: 15207554 [TBL] [Abstract][Full Text] [Related]
11. Objective refraction from monochromatic wavefront aberrations via Zernike power polynomials. Robert Iskander D; Davis BA; Collins MJ; Franklin R Ophthalmic Physiol Opt; 2007 May; 27(3):245-55. PubMed ID: 17470237 [TBL] [Abstract][Full Text] [Related]
12. Comparison of wavefront sensing devices. Solomon KD; Fernández de Castro LE; Sandoval HP; Vroman DT Ophthalmol Clin North Am; 2004 Jun; 17(2):119-27, v. PubMed ID: 15207555 [TBL] [Abstract][Full Text] [Related]
13. [Comparative analyses between clinical refraction and automatic refraction obtained through a wave front sensor]. de Freitas W; Melo Júnior LA; Schor P; Campos M Arq Bras Oftalmol; 2007; 70(4):677-82. PubMed ID: 17906765 [TBL] [Abstract][Full Text] [Related]
15. Alcon CustomCornea platform with LADARWave and LADARVision. Liedel KK; Pettit GH Ophthalmol Clin North Am; 2004 Jun; 17(2):161-72, vi. PubMed ID: 15207559 [TBL] [Abstract][Full Text] [Related]
16. The future of wavefront sensing and customization. Yeh SI; Azar DT Ophthalmol Clin North Am; 2004 Jun; 17(2):247-60, viii. PubMed ID: 15207566 [TBL] [Abstract][Full Text] [Related]
17. Traditional versus computer-assisted refraction: "which is better?". Borish IM; Catania LJ J Am Optom Assoc; 1997 Dec; 68(12):749-56. PubMed ID: 9635380 [No Abstract] [Full Text] [Related]
18. Accuracy, repeatability, and clinical application of spherocylindrical automated refraction using time-based wavefront aberrometry measurements. Nissman SA; Tractenberg RE; Saba CM; Douglas JC; Lustbader JM Ophthalmology; 2006 Apr; 113(4):577.e1-2. PubMed ID: 16527354 [TBL] [Abstract][Full Text] [Related]
19. A comparison of autorefractor performance. Sachdev N; Cairns G; McGhee CN Optom Vis Sci; 2005 Jan; 82(1):9; author reply 9-10. PubMed ID: 15630398 [No Abstract] [Full Text] [Related]
20. Clinical experience with the Tscherning aberrometer. Kaemmerer M; Mrochen M; Mierdel P; Krinke HE; Seiler T J Refract Surg; 2000; 16(5):S584-7. PubMed ID: 11019879 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]