These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 15130721)

  • 21. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs.
    Papini M; Zdero R; Schemitsch EH; Zalzal P
    J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Feasibility of knitted carbon/PEEK composites for orthopedic bone plates.
    Fujihara K; Huang ZM; Ramakrishna S; Satknanantham K; Hamada H
    Biomaterials; 2004 Aug; 25(17):3877-85. PubMed ID: 15020164
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The nanocomposite scaffold of poly(lactide-co-glycolide) and hydroxyapatite surface-grafted with L-lactic acid oligomer for bone repair.
    Cui Y; Liu Y; Cui Y; Jing X; Zhang P; Chen X
    Acta Biomater; 2009 Sep; 5(7):2680-92. PubMed ID: 19376759
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermal residual stresses near the interface between plasma-sprayed hydroxyapatite coating and titanium substrate: finite element analysis and synchrotron radiation measurements.
    Cofino B; Fogarassy P; Millet P; Lodini A
    J Biomed Mater Res A; 2004 Jul; 70(1):20-7. PubMed ID: 15174105
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bioactive composites consisting of PEEK and calcium silicate powders.
    Kim IY; Sugino A; Kikuta K; Ohtsuki C; Cho SB
    J Biomater Appl; 2009 Aug; 24(2):105-18. PubMed ID: 18757493
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of material properties of composite restoration on the strength of the restoration-dentine interface due to polymerization shrinkage, thermal and occlusal loading.
    Borkowski K; Kotousov A; Kahler B
    Med Eng Phys; 2007 Jul; 29(6):671-6. PubMed ID: 17000129
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhancement of osteogenesis on micro/nano-topographical carbon fiber-reinforced polyetheretherketone-nanohydroxyapatite biocomposite.
    Xu A; Liu X; Gao X; Deng F; Deng Y; Wei S
    Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():592-8. PubMed ID: 25579962
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Three-dimensional finite element analysis of strength and adhesion of composite resin versus ceramic inlays in molars.
    Dejak B; Mlotkowski A
    J Prosthet Dent; 2008 Feb; 99(2):131-40. PubMed ID: 18262014
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Constitutive models for a poly(e-caprolactone) scaffold.
    Quinn TP; Oreskovic TL; McCowan CN; Washburn NR
    Biomed Sci Instrum; 2004; 40():249-54. PubMed ID: 15133966
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Processing of hydroxyapatite reinforced ultrahigh molecular weight polyethylene for biomedical applications.
    Fang L; Leng Y; Gao P
    Biomaterials; 2005 Jun; 26(17):3471-8. PubMed ID: 15621236
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A material model for internal stress of dental composites caused by the curing process.
    Koplin C; Jaeger R; Hahn P
    Dent Mater; 2009 Mar; 25(3):331-8. PubMed ID: 18819703
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of nanohydroxyapatite/polycarbonate composite for bone repair.
    Liao Jianguo ; Zhang Li ; Zuo Yi ; Wang Huanan ; Li Jidong ; Zou Qin ; Li Yubao
    J Biomater Appl; 2009 Jul; 24(1):31-45. PubMed ID: 19386668
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanical behavior of hydroxyapatite biomaterials: an experimentally validated micromechanical model for elasticity and strength.
    Fritsch A; Dormieux L; Hellmich C; Sanahuja J
    J Biomed Mater Res A; 2009 Jan; 88(1):149-61. PubMed ID: 18286602
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chemical-physical characterization and in vitro preliminary biological assessment of hyaluronic acid benzyl ester-hydroxyapatite composite.
    Giordano C; Sanginario V; Ambrosio L; Silvio LD; Santin M
    J Biomater Appl; 2006 Jan; 20(3):237-52. PubMed ID: 16364964
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Time-dependent response of laminated isotropic strips with viscoelastic interfaces.
    Yan W; Chen WQ
    J Zhejiang Univ Sci; 2004 Nov; 5(11):1318-21. PubMed ID: 15495322
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An electrospun triphasic nanofibrous scaffold for bone tissue engineering.
    Catledge SA; Clem WC; Shrikishen N; Chowdhury S; Stanishevsky AV; Koopman M; Vohra YK
    Biomed Mater; 2007 Jun; 2(2):142-50. PubMed ID: 18458448
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Self-joining of zirconia/hydroxyapatite composites using plastic deformation process.
    Singh D; de la Cinta Lorenzo-Martin M; GutiƩrrez-Mora F; Routbort JL; Case ED
    Acta Biomater; 2006 Nov; 2(6):669-75. PubMed ID: 16935578
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Finite element analysis of a model of a therapeutic shoe: effect of material selection for the outsole.
    Lewis G
    Biomed Mater Eng; 2003; 13(1):75-81. PubMed ID: 12652024
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ab initio elastic properties and tensile strength of crystalline hydroxyapatite.
    Ching WY; Rulis P; Misra A
    Acta Biomater; 2009 Oct; 5(8):3067-75. PubMed ID: 19442769
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Residual stress in hydroxyapatite coating: nonlinear analysis and high-energy synchrotron measurements.
    Fogarassy P; Cofino B; Millet P; Lodini A
    IEEE Trans Biomed Eng; 2005 Jul; 52(7):1161-6. PubMed ID: 16041979
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.