These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 15132263)

  • 1. Control of prehension in hemiparetic cerebral palsy: similarities and differences between the ipsi- and contra-lesional sides of the body.
    Steenbergen B; van der Kamp J
    Dev Med Child Neurol; 2004 May; 46(5):325-32. PubMed ID: 15132263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Movement kinematics in prehension are affected by grasping objects of different mass.
    Eastough D; Edwards MG
    Exp Brain Res; 2007 Jan; 176(1):193-8. PubMed ID: 17072606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of object position and size on human prehension movements.
    Paulignan Y; Frak VG; Toni I; Jeannerod M
    Exp Brain Res; 1997 Apr; 114(2):226-34. PubMed ID: 9166912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A detailed analysis of the planning and execution of prehension movements by three adolescents with spastic hemiparesis due to cerebral palsy.
    Mutsaarts M; Steenbergen B; Meulenbroek R
    Exp Brain Res; 2004 Jun; 156(3):293-304. PubMed ID: 14762638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Touch the table before the target: contact with an underlying surface may assist the development of precise visually controlled reach and grasp movements in human infants.
    Karl JM; Wilson AM; Bertoli ME; Shubear NS
    Exp Brain Res; 2018 Aug; 236(8):2185-2207. PubMed ID: 29797280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An analysis of spatiotemporal variability during prehension movements: effects of object size and distance.
    Kudoh N; Hattori M; Numata N; Maruyama K
    Exp Brain Res; 1997 Dec; 117(3):457-64. PubMed ID: 9438714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. When two eyes are better than one in prehension: monocular viewing and end-point variance.
    Loftus A; Servos P; Goodale MA; Mendarozqueta N; Mon-Williams M
    Exp Brain Res; 2004 Oct; 158(3):317-27. PubMed ID: 15164152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prehension movements in the macaque monkey: effects of perturbation of object size and location.
    Roy AC; Paulignan Y; Meunier M; Boussaoud D
    Exp Brain Res; 2006 Feb; 169(2):182-93. PubMed ID: 16328312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Choosing between alternative wrist postures: action planning needs perception.
    Dijkerman HC; McIntosh RD; Schindler I; Nijboer TC; Milner AD
    Neuropsychologia; 2009 May; 47(6):1476-82. PubMed ID: 19114051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of vision in aperture closure control during reach-to-grasp movements.
    Rand MK; Lemay M; Squire LM; Shimansky YP; Stelmach GE
    Exp Brain Res; 2007 Aug; 181(3):447-60. PubMed ID: 17476491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Grasping with the left and right hand: a kinematic study.
    Grosskopf A; Kuhtz-Buschbeck JP
    Exp Brain Res; 2006 Jan; 168(1-2):230-40. PubMed ID: 16078023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective perturbation of visual input during prehension movements. 2. The effects of changing object size.
    Paulignan Y; Jeannerod M; MacKenzie C; Marteniuk R
    Exp Brain Res; 1991; 87(2):407-20. PubMed ID: 1769391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Different coupling for the reach and grasp components in bimanual prehension movements.
    Dohle C; Ostermann G; Hefter H; Freund HJ
    Neuroreport; 2000 Nov; 11(17):3787-91. PubMed ID: 11117492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Independent movements of the digits in grasping.
    Smeets JB; Brenner E
    Exp Brain Res; 2001 Jul; 139(1):92-100. PubMed ID: 11482847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Common organization for unimanual and bimanual reach-to-grasp tasks.
    Tresilian JR; Stelmach GE
    Exp Brain Res; 1997 Jun; 115(2):283-99. PubMed ID: 9224856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated control of hand transport and orientation during prehension movements.
    Desmurget M; Prablanc C; Arzi M; Rossetti Y; Paulignan Y; Urquizar C
    Exp Brain Res; 1996 Jul; 110(2):265-78. PubMed ID: 8836690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The coordination patterns observed when two hands reach-to-grasp separate objects.
    Bingham GP; Hughes K; Mon-Williams M
    Exp Brain Res; 2008 Jan; 184(3):283-93. PubMed ID: 17763844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A model of the coupling between grip aperture and hand transport during human prehension.
    Hu Y; Osu R; Okada M; Goodale MA; Kawato M
    Exp Brain Res; 2005 Nov; 167(2):301-4. PubMed ID: 16217646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Manual asymmetries in grasp pre-shaping and transport-grasp coordination.
    Tretriluxana J; Gordon J; Winstein CJ
    Exp Brain Res; 2008 Jun; 188(2):305-15. PubMed ID: 18437369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impairment severity selectively affects the control of proximal and distal components of reaching movements in children with hemiplegic cerebral palsy.
    Domellöf E; Rösblad B; Rönnqvist L
    Dev Med Child Neurol; 2009 Oct; 51(10):807-16. PubMed ID: 19747280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.