These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 15132494)

  • 1. Dynamic modeling of renal blood flow in Dahl hypertensive and normotensive rats.
    Knudsen T; Elmer H; Knudsen MH; Holstein-Rathlou NH; Stoustrup J
    IEEE Trans Biomed Eng; 2004 May; 51(5):689-97. PubMed ID: 15132494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-varying properties of renal autoregulatory mechanisms.
    Zou R; Cupples WA; Yip KP; Holstein-Rathlou NH; Chon KH
    IEEE Trans Biomed Eng; 2002 Oct; 49(10):1112-20. PubMed ID: 12374335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of transient renal autoregulatory mechanisms using time-frequency spectral techniques.
    Wang H; Siu K; Ju K; Moore LC; Chon KH
    IEEE Trans Biomed Eng; 2005 Jun; 52(6):1033-9. PubMed ID: 15977733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of dynamics in renal autoregulation using volterra models.
    Hacioğlu R; Williamson GA; Abu-Amarah I; Griffin KA; Bidani AK
    IEEE Trans Biomed Eng; 2006 Nov; 53(11):2166-76. PubMed ID: 17073321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A robust method for detection of linear and nonlinear interactions: application to renal blood flow dynamics.
    Feng L; Siu K; Moore LC; Marsh DJ; Chon KH
    Ann Biomed Eng; 2006 Feb; 34(2):339-53. PubMed ID: 16496083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sympatho-renal interactions in the determination of arterial pressure: role in hypertension.
    Grisk O
    Exp Physiol; 2005 Mar; 90(2):183-7. PubMed ID: 15604108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonlinear system analysis of renal autoregulation in normotensive and hypertensive rats.
    Chon KH; Chen YM; Holstein-Rathlou NH; Marmarelis VZ
    IEEE Trans Biomed Eng; 1998 Mar; 45(3):342-53. PubMed ID: 9509750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Double-wavelet approach to studying the modulation properties of nonstationary multimode dynamics.
    Sosnovtseva OV; Pavlov AN; Mosekilde E; Holstein-Rathlou NH; Marsh DJ
    Physiol Meas; 2005 Aug; 26(4):351-62. PubMed ID: 15886431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling neuro-vascular coupling in rat cerebellum: characterization of deviations from linearity.
    Rasmussen T; Holstein-Rathlou NH; Lauritzen M
    Neuroimage; 2009 Mar; 45(1):96-108. PubMed ID: 19027074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitivity analysis and model assessment: mathematical models for arterial blood flow and blood pressure.
    Ellwein LM; Tran HT; Zapata C; Novak V; Olufsen MS
    Cardiovasc Eng; 2008 Jun; 8(2):94-108. PubMed ID: 18080757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parameter estimation in a stochastic model of the tubuloglomerular feedback mechanism in a rat nephron.
    Ditlevsen S; Yip KP; Holstein-Rathlou NH
    Math Biosci; 2005 Mar; 194(1):49-69. PubMed ID: 15836864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robust algorithm for estimation of time-varying transfer functions.
    Zou R; Chon KH
    IEEE Trans Biomed Eng; 2004 Feb; 51(2):219-28. PubMed ID: 14765694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Statistical approach to quantify the presence of phase coupling using the bispectrum.
    Siu KL; Ahn JM; Ju K; Lee M; Shin K; Chon KH
    IEEE Trans Biomed Eng; 2008 May; 55(5):1512-20. PubMed ID: 18440897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. N-Acetylcysteine improves renal dysfunction, ameliorates kidney damage and decreases blood pressure in salt-sensitive hypertension.
    Tian N; Rose RA; Jordan S; Dwyer TM; Hughson MD; Manning RD
    J Hypertens; 2006 Nov; 24(11):2263-70. PubMed ID: 17053549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tubuloglomerular feedback in Dahl rats.
    Karlsen FM; Leyssac PP; Holstein-Rathlou NH
    Am J Physiol; 1998 Jun; 274(6):R1561-9. PubMed ID: 9608009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Numerical simulation of the relationship between blood pressure and blood stream of arteries].
    Shi X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Dec; 22(6):1121-3, 1127. PubMed ID: 16422080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blood pressure and proteinuria effects of multiple quantitative trait loci on rat chromosome 9 that differentiate the spontaneously hypertensive rat from the Dahl salt-sensitive rat.
    Toland EJ; Yerga-Woolwine S; Farms P; Cicila GT; Saad Y; Joe B
    J Hypertens; 2008 Nov; 26(11):2134-41. PubMed ID: 18854752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Double-wavelet approach to study frequency and amplitude modulation in renal autoregulation.
    Sosnovtseva OV; Pavlov AN; Mosekilde E; Holstein-Rathlou NH; Marsh DJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 1):031915. PubMed ID: 15524557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Renal functional responses to ischaemia-reperfusion injury in normotensive and hypertensive rats following non-selective and selective cyclo-oxygenase inhibition with nitric oxide donation.
    Knight S; Johns EJ
    Clin Exp Pharmacol Physiol; 2008 Jan; 35(1):11-6. PubMed ID: 18047621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Renal artery stenosis: extracting quantitative parameters with a mathematical model fitted to magnetic resonance blood flow data.
    Larsson M; Persson A; Eriksson P; Kihlberg J; Smedby O
    J Magn Reson Imaging; 2008 Jan; 27(1):140-7. PubMed ID: 18050354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.