BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 1513267)

  • 1. Existence of phosphoenolpyruvate: carbohydrate phosphotransferase systems in Lactobacillus fermentum, an obligate heterofermenter.
    Nagasaki H; Ito K; Matsuzaki S; Tanaka S
    Microbiol Immunol; 1992; 36(5):533-8. PubMed ID: 1513267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Phosphoenolpyruvate:hexose phosphotransferase systems in Lactobacillus species].
    Nagasaki H; Ito K; Matsuzaki S; Tanaka S
    Nihon Saikingaku Zasshi; 1992 Jul; 47(4):617-24. PubMed ID: 1433910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for the presence of heat-stable protein (HPr) and ATP-dependent HPr kinase in heterofermentative lactobacilli lacking phosphoenolpyruvate:glycose phosphotransferase activity.
    Reizer J; Peterkofsky A; Romano AH
    Proc Natl Acad Sci U S A; 1988 Apr; 85(7):2041-5. PubMed ID: 2832843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of the phosphoenolpyruvate:mannose phosphotransferase system to carbon catabolite repression in Lactobacillus pentosus.
    Chaillou S; Postma PW; Pouwels PH
    Microbiology (Reading); 2001 Mar; 147(Pt 3):671-679. PubMed ID: 11238974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Phosphoenolpyruvate:carbohydrate phosphotransferase systems in Enterococcus faecalis].
    Muraoka A; Ito K; Nagasaki H; Tanaka S
    Nihon Saikingaku Zasshi; 1991 Mar; 46(2):515-22. PubMed ID: 1905762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of lactose phosphotransferase systems in Lactobacillus gasseri ATCC 33323 required for lactose utilization.
    Francl AL; Hoeflinger JL; Miller MJ
    Microbiology (Reading); 2012 Apr; 158(Pt 4):944-952. PubMed ID: 22282520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of an anaerobically induced phosphoenolpyruvate-dependent fructose-specific phosphotransferase system and evidence for the Embden-Meyerhof glycolytic pathway in the heterofermentative bacterium Lactobacillus brevis.
    Saier MH; Ye JJ; Klinke S; Nino E
    J Bacteriol; 1996 Jan; 178(1):314-6. PubMed ID: 8550437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The PTS transporters of Lactobacillus gasseri ATCC 33323.
    Francl AL; Thongaram T; Miller MJ
    BMC Microbiol; 2010 Mar; 10():77. PubMed ID: 20226062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence of a glucose proton motive force-dependent permease and a fructose phosphoenolpyruvate:phosphotransferase transport system in Lactobacillus reuteri CRL 1098.
    Taranto MP; Font de Valdez G; Perez-Martinez G
    FEMS Microbiol Lett; 1999 Dec; 181(1):109-12. PubMed ID: 10564795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The phosphoenolpyruvate-dependent glucose-phosphotransferase system from Escherichia coli K-12 as the center of a network regulating carbohydrate flux in the cell.
    Gabor E; Göhler AK; Kosfeld A; Staab A; Kremling A; Jahreis K
    Eur J Cell Biol; 2011 Sep; 90(9):711-20. PubMed ID: 21621292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The phosphoenolpyruvate:sugar phosphotransferase system of oral streptococci and its role in the control of sugar metabolism.
    Vadeboncoeur C; Pelletier M
    FEMS Microbiol Rev; 1997 Feb; 19(3):187-207. PubMed ID: 9050218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sugar transport systems in Corynebacterium glutamicum: features and applications to strain development.
    Ikeda M
    Appl Microbiol Biotechnol; 2012 Dec; 96(5):1191-200. PubMed ID: 23081775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of carbohydrate transport in Lactococcus and Lactobacillus.
    Ye J
    Res Microbiol; 1996; 147(6-7):523-7. PubMed ID: 9084765
    [No Abstract]   [Full Text] [Related]  

  • 14. Phosphoenolpyruvate-dependent sucrose phosphotransferase activity in five serotypes of Streptococcus mutans.
    Slee AM; Tanzer JM
    Infect Immun; 1979 Nov; 26(2):783-6. PubMed ID: 546796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbohydrate Transport by Group Translocation: The Bacterial Phosphoenolpyruvate: Sugar Phosphotransferase System.
    Jeckelmann JM; Erni B
    Subcell Biochem; 2019; 92():223-274. PubMed ID: 31214989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nutrient-scavenging stress response in an Escherichia coli strain lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system, as explored by gene expression profile analysis.
    Flores S; Flores N; de Anda R; González A; Escalante A; Sigala JC; Gosset G; Bolívar F
    J Mol Microbiol Biotechnol; 2005; 10(1):51-63. PubMed ID: 16491026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Current knowledge of the Escherichia coli phosphoenolpyruvate-carbohydrate phosphotransferase system: peculiarities of regulation and impact on growth and product formation.
    Escalante A; Salinas Cervantes A; Gosset G; Bolívar F
    Appl Microbiol Biotechnol; 2012 Jun; 94(6):1483-94. PubMed ID: 22573269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emergence of multiple xylitol-resistant (fructose PTS-) mutants from human isolates of mutans streptococci during growth on dietary sugars in the presence of xylitol.
    Trahan L; Bourgeau G; Breton R
    J Dent Res; 1996 Nov; 75(11):1892-900. PubMed ID: 9003237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genomic analysis of the phosphotransferase system in Clostridium botulinum.
    Mitchell WJ; Tewatia P; Meaden PG
    J Mol Microbiol Biotechnol; 2007; 12(1-2):33-42. PubMed ID: 17183209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative characterization of spirosomes isolated from Lactobacillus brevis, Lactobacillus fermentum, and Lactobacillus buchneri.
    Nomura S; Masuda K; Kawata T
    Microbiol Immunol; 1989; 33(1):23-34. PubMed ID: 2733612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.