These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 15132670)

  • 1. Conserved C-termini of Spidroins are secreted by the major ampullate glands and retained in the silk thread.
    Sponner A; Unger E; Grosse F; Weisshart K
    Biomacromolecules; 2004; 5(3):840-5. PubMed ID: 15132670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the protein components of Nephila clavipes dragline silk.
    Sponner A; Schlott B; Vollrath F; Unger E; Grosse F; Weisshart K
    Biochemistry; 2005 Mar; 44(12):4727-36. PubMed ID: 15779899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spidroins from the Brazilian spider Nephilengys cruentata (Araneae: Nephilidae).
    Bittencourt D; Souto BM; Verza NC; Vinecky F; Dittmar K; Silva PI; Andrade AC; da Silva FR; Lewis RV; Rech EL
    Comp Biochem Physiol B Biochem Mol Biol; 2007 Aug; 147(4):597-606. PubMed ID: 17490908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of the conserved N-terminal domains in major ampullate spider silk proteins.
    Motriuk-Smith D; Smith A; Hayashi CY; Lewis RV
    Biomacromolecules; 2005; 6(6):3152-9. PubMed ID: 16283740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmental conditions impinge on dragline silk protein composition.
    Guehrs KH; Schlott B; Grosse F; Weisshart K
    Insect Mol Biol; 2008 Sep; 17(5):553-64. PubMed ID: 18828841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of proline on the network structure of major ampullate silks as inferred from their mechanical and optical properties.
    Savage KN; Gosline JM
    J Exp Biol; 2008 Jun; 211(Pt 12):1937-47. PubMed ID: 18515724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spider minor ampullate silk proteins are constituents of prey wrapping silk in the cob weaver Latrodectus hesperus.
    La Mattina C; Reza R; Hu X; Falick AM; Vasanthavada K; McNary S; Yee R; Vierra CA
    Biochemistry; 2008 Apr; 47(16):4692-700. PubMed ID: 18376847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The conserved C-termini contribute to the properties of spider silk fibroins.
    Sponner A; Vater W; Rommerskirch W; Vollrath F; Unger E; Grosse F; Weisshart K
    Biochem Biophys Res Commun; 2005 Dec; 338(2):897-902. PubMed ID: 16253207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential polymerization of the two main protein components of dragline silk during fibre spinning.
    Sponner A; Unger E; Grosse F; Weisshart K
    Nat Mater; 2005 Oct; 4(10):772-5. PubMed ID: 16184170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Major ampullate spidroins from Euprosthenops australis: multiplicity at protein, mRNA and gene levels.
    Rising A; Johansson J; Larson G; Bongcam-Rudloff E; Engström W; Hjälm G
    Insect Mol Biol; 2007 Oct; 16(5):551-61. PubMed ID: 17680798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expansion and intragenic homogenization of spider silk genes since the Triassic: evidence from Mygalomorphae (tarantulas and their kin) spidroins.
    Garb JE; DiMauro T; Lewis RV; Hayashi CY
    Mol Biol Evol; 2007 Nov; 24(11):2454-64. PubMed ID: 17728281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An investigation of the divergence of major ampullate silk fibers from Nephila clavipes and Argiope aurantia.
    Brooks AE; Steinkraus HB; Nelson SR; Lewis RV
    Biomacromolecules; 2005; 6(6):3095-9. PubMed ID: 16283732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural properties of recombinant nonrepetitive and repetitive parts of major ampullate spidroin 1 from Euprosthenops australis: implications for fiber formation.
    Hedhammar M; Rising A; Grip S; Martinez AS; Nordling K; Casals C; Stark M; Johansson J
    Biochemistry; 2008 Mar; 47(11):3407-17. PubMed ID: 18293938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular characterization and evolutionary study of spider tubuliform (eggcase) silk protein.
    Tian M; Lewis RV
    Biochemistry; 2005 Jun; 44(22):8006-12. PubMed ID: 15924419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular and mechanical characterization of aciniform silk: uniformity of iterated sequence modules in a novel member of the spider silk fibroin gene family.
    Hayashi CY; Blackledge TA; Lewis RV
    Mol Biol Evol; 2004 Oct; 21(10):1950-9. PubMed ID: 15240839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diversity of molecular transformations involved in the formation of spider silks.
    Lefèvre T; Boudreault S; Cloutier C; Pézolet M
    J Mol Biol; 2011 Jan; 405(1):238-53. PubMed ID: 21050860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationships between supercontraction and mechanical properties of spider silk.
    Liu Y; Shao Z; Vollrath F
    Nat Mater; 2005 Dec; 4(12):901-5. PubMed ID: 16299506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphology and composition of the spider major ampullate gland and dragline silk.
    Andersson M; Holm L; Ridderstråle Y; Johansson J; Rising A
    Biomacromolecules; 2013 Aug; 14(8):2945-52. PubMed ID: 23837699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Araneoid egg case silk: a fibroin with novel ensemble repeat units from the black widow spider, Latrodectus hesperus.
    Hu X; Lawrence B; Kohler K; Falick AM; Moore AM; McMullen E; Jones PR; Vierra C
    Biochemistry; 2005 Aug; 44(30):10020-7. PubMed ID: 16042378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and post-translational modifications of the web silk protein spidroin-1 from Nephila spiders.
    dos Santos-Pinto JR; Lamprecht G; Chen WQ; Heo S; Hardy JG; Priewalder H; Scheibel TR; Palma MS; Lubec G
    J Proteomics; 2014 Jun; 105():174-85. PubMed ID: 24434585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.