BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 15132701)

  • 1. Molecular modeling and simulation of Mycobacterium tuberculosis cell wall permeability.
    Hong X; Hopfinger AJ
    Biomacromolecules; 2004; 5(3):1066-77. PubMed ID: 15132701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction, molecular modeling, and simulation of Mycobacterium tuberculosis cell walls.
    Hong X; Hopfinger AJ
    Biomacromolecules; 2004; 5(3):1052-65. PubMed ID: 15132700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction and mechanistic interpretation of human oral drug absorption using MI-QSAR analysis.
    Iyer M; Tseng YJ; Senese CL; Liu J; Hopfinger AJ
    Mol Pharm; 2007; 4(2):218-31. PubMed ID: 17397237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Frontier of mycobacterium research--host vs. mycobacterium].
    Okada M; Shirakawa T
    Kekkaku; 2005 Sep; 80(9):613-29. PubMed ID: 16245793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting MDCK cell permeation coefficients of organic molecules using membrane-interaction QSAR analysis.
    Chen LL; Yao J; Yang JB; Yang J
    Acta Pharmacol Sin; 2005 Nov; 26(11):1322-33. PubMed ID: 16225754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Further quantification of the role of internal unstirred layers during the measurement of transport coefficients in giant internodes of Chara by a new stop-flow technique.
    Kim Y; Ye Q; Reinhardt H; Steudle E
    J Exp Bot; 2006; 57(15):4133-44. PubMed ID: 17085756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationships between structure and high-throughput screening permeability of diverse drugs with artificial membranes: application to prediction of Caco-2 cell permeability.
    Fujikawa M; Ano R; Nakao K; Shimizu R; Akamatsu M
    Bioorg Med Chem; 2005 Aug; 13(15):4721-32. PubMed ID: 15936203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting permeability coefficient in ADMET evaluation by using different membranes-interaction QSAR.
    Liu J; Li Y; Pan D; Hopfinger AJ
    Int J Pharm; 2005 Nov; 304(1-2):115-23. PubMed ID: 16182478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Foundations of antibiotic resistance in bacterial physiology: the mycobacterial paradigm.
    Nguyen L; Thompson CJ
    Trends Microbiol; 2006 Jul; 14(7):304-12. PubMed ID: 16759863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drug-membrane interactions studied by molecular dynamics simulation: size dependence of diffusion.
    Bassolino D; Alper H; Stouch TR
    Drug Des Discov; 1996 Apr; 13(3-4):135-41. PubMed ID: 8874050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of diffusion within the cell wall in living roots of Arabidopsis thaliana.
    Kramer EM; Frazer NL; Baskin TI
    J Exp Bot; 2007; 58(11):3005-15. PubMed ID: 17728296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative cell wall core biosynthesis in the mycolated pathogens, Mycobacterium tuberculosis and Corynebacterium diphtheriae.
    Dover LG; Cerdeño-Tárraga AM; Pallen MJ; Parkhill J; Besra GS
    FEMS Microbiol Rev; 2004 May; 28(2):225-50. PubMed ID: 15109786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Azole resistance in Mycobacterium tuberculosis is mediated by the MmpS5-MmpL5 efflux system.
    Milano A; Pasca MR; Provvedi R; Lucarelli AP; Manina G; Ribeiro AL; Manganelli R; Riccardi G
    Tuberculosis (Edinb); 2009 Jan; 89(1):84-90. PubMed ID: 18851927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of mycobacterial efflux transporters in drug resistance: an unresolved question.
    De Rossi E; Aínsa JA; Riccardi G
    FEMS Microbiol Rev; 2006 Jan; 30(1):36-52. PubMed ID: 16438679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of membrane-solvent-solute interactions on solute permeation in skin.
    Dias M; Hadgraft J; Lane ME
    Int J Pharm; 2007 Aug; 340(1-2):65-70. PubMed ID: 17467936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances toward the inhibition of mAG and LAM synthesis in Mycobacterium tuberculosis.
    Umesiri FE; Sanki AK; Boucau J; Ronning DR; Sucheck SJ
    Med Res Rev; 2010 Mar; 30(2):290-326. PubMed ID: 20099253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MI-QSAR models for prediction of corneal permeability of organic compounds.
    Chen C; Yang J
    Acta Pharmacol Sin; 2006 Feb; 27(2):193-204. PubMed ID: 16412269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular simulations of solute transport in xylose isomerase crystals.
    Malek K; Coppens MO
    J Phys Chem B; 2008 Feb; 112(5):1549-54. PubMed ID: 18198855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new topological descriptors based model for predicting intestinal epithelial transport of drugs in Caco-2 cell culture.
    Marrero Ponce Y; Cabrera Pérez MA; Romero Zaldivar V; González Díaz H; Torrens F
    J Pharm Pharm Sci; 2004 Jun; 7(2):186-99. PubMed ID: 15367375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.