BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 15133000)

  • 1. Correspondence between laryngeal vocal fold movement and muscle activity during speech and nonspeech gestures.
    Poletto CJ; Verdun LP; Strominger R; Ludlow CL
    J Appl Physiol (1985); 2004 Sep; 97(3):858-66. PubMed ID: 15133000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional posture changes of the vocal fold from paired intrinsic laryngeal muscles.
    Vahabzadeh-Hagh AM; Zhang Z; Chhetri DK
    Laryngoscope; 2017 Mar; 127(3):656-664. PubMed ID: 27377032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Opening and closing mechanisms of the larynx.
    Konrad HR; Rattenborg CC; Kain ML; Barton MD; Logan WJ; Holaday DA
    Otolaryngol Head Neck Surg; 1984 Aug; 92(4):402-5. PubMed ID: 6435058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of adductory force of individual laryngeal muscles in an in vivo canine model.
    Nasri S; Sercarz JA; Azizzadeh B; Kreiman J; Berke GS
    Laryngoscope; 1994 Oct; 104(10):1213-8. PubMed ID: 7934590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of concentric needle versus hooked-wire electrodes in the canine larynx.
    Jaffe DM; Solomon NP; Robinson RA; Hoffman HT; Luschei ES
    Otolaryngol Head Neck Surg; 1998 May; 118(5):655-62. PubMed ID: 9591865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laryngeal muscle responses to mechanical displacement of the thyroid cartilage in humans.
    Loucks TM; Poletto CJ; Saxon KG; Ludlow CL
    J Appl Physiol (1985); 2005 Sep; 99(3):922-30. PubMed ID: 15932961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laryngeal gestures during stop production using high-speed digital images.
    Hong KH; Kim HK; Niimi S
    J Voice; 2002 Jun; 16(2):207-14. PubMed ID: 12150373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of the pars recta and pars oblique of cricothyroid muscle in speech production.
    Hong KH; Kim HK; Kim YH
    J Voice; 2001 Dec; 15(4):512-8. PubMed ID: 11792027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative laryngeal electromyography (LEMG) in unilateral vocal fold paralysis: Developing normative values using the opposite normal mobile vocal fold.
    Chen IHK; Remli R; Azman M; Ubaidah MA; Mohamed AS; Baki MM
    Auris Nasus Larynx; 2021 Dec; 48(6):1140-1149. PubMed ID: 33896673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction between the thyroarytenoid and lateral cricoarytenoid muscles in the control of vocal fold adduction and eigenfrequencies.
    Yin J; Zhang Z
    J Biomech Eng; 2014 Nov; 136(11):1110061-11100610. PubMed ID: 25162438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Refinements in modeling the passive properties of laryngeal soft tissue.
    Hunter EJ; Titze IR
    J Appl Physiol (1985); 2007 Jul; 103(1):206-19. PubMed ID: 17412782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of vocal fold cover stiffness by laryngeal muscles: a preliminary study.
    Chhetri DK; Berke GS; Lotfizadeh A; Goodyer E
    Laryngoscope; 2009 Jan; 119(1):222-7. PubMed ID: 19117308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of thyroarytenoid and cricothyroid muscle activation on vocal fold stiffness and eigenfrequencies.
    Yin J; Zhang Z
    J Acoust Soc Am; 2013 May; 133(5):2972-83. PubMed ID: 23654401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thyroarytenoid muscle activity and infraglottic aspect of canine vocal fold vibration.
    Yumoto E; Kadota Y; Kurokawa H
    Arch Otolaryngol Head Neck Surg; 1995 Jul; 121(7):759-64. PubMed ID: 7598853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laryngeal muscle activity in unilateral vocal fold paralysis patients using electromyography and coronal reconstructed images.
    Sanuki T; Yumoto E; Nishimoto K; Minoda R
    Otolaryngol Head Neck Surg; 2014 Apr; 150(4):625-30. PubMed ID: 24493787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An implantable system for In Vivo chronic electromyographic study in the larynx.
    Li Y; Huang S; Zealear D
    Muscle Nerve; 2017 May; 55(5):706-714. PubMed ID: 27543847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of Intrinsic Laryngeal Muscle Contraction.
    Vahabzadeh-Hagh AM; Pillutla P; Zhang Z; Chhetri DK
    Laryngoscope; 2019 Jan; 129(1):E21-E25. PubMed ID: 30325497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cricothyroid muscle and thyroarytenoid muscle dominance in vocal register control: preliminary results.
    Kochis-Jennings KA; Finnegan EM; Hoffman HT; Jaiswal S; Hull D
    J Voice; 2014 Sep; 28(5):652.e21-652.e29. PubMed ID: 24856144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional electrical stimulation of laryngeal adductor muscle restores mobility of vocal fold and improves voice sounds in cats with unilateral laryngeal paralysis.
    Katada A; Nonaka S; Adachi M; Kunibe I; Arakawa T; Imada M; Hayashi T; Zealear DL; Harabuchi Y
    Neurosci Res; 2004 Oct; 50(2):153-9. PubMed ID: 15380322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D analysis of the movements of the laryngeal cartilages during singing.
    Unteregger F; Honegger F; Potthast S; Zwicky S; Schiwowa J; Storck C
    Laryngoscope; 2017 Jul; 127(7):1639-1643. PubMed ID: 27882556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.