These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
327 related articles for article (PubMed ID: 15133061)
1. Exposure to cAMP and beta-adrenergic stimulation recruits Ca(V)3 T-type channels in rat chromaffin cells through Epac cAMP-receptor proteins. Novara M; Baldelli P; Cavallari D; Carabelli V; Giancippoli A; Carbone E J Physiol; 2004 Jul; 558(Pt 2):433-49. PubMed ID: 15133061 [TBL] [Abstract][Full Text] [Related]
2. An activity-dependent increased role for L-type calcium channels in exocytosis is regulated by adrenergic signaling in chromaffin cells. Polo-Parada L; Chan SA; Smith C Neuroscience; 2006 Dec; 143(2):445-59. PubMed ID: 16962713 [TBL] [Abstract][Full Text] [Related]
3. cAMP increases Ca2+-dependent exocytosis through both PKA and Epac2 in mouse melanotrophs from pituitary tissue slices. Sedej S; Rose T; Rupnik M J Physiol; 2005 Sep; 567(Pt 3):799-813. PubMed ID: 15994184 [TBL] [Abstract][Full Text] [Related]
4. Exchange protein directly activated by cAMP mediates slow delayed-rectifier current remodeling by sustained β-adrenergic activation in guinea pig hearts. Aflaki M; Qi XY; Xiao L; Ordog B; Tadevosyan A; Luo X; Maguy A; Shi Y; Tardif JC; Nattel S Circ Res; 2014 Mar; 114(6):993-1003. PubMed ID: 24508724 [TBL] [Abstract][Full Text] [Related]
5. Opposite action of beta1- and beta2-adrenergic receptors on Ca(V)1 L-channel current in rat adrenal chromaffin cells. Cesetti T; Hernández-Guijo JM; Baldelli P; Carabelli V; Carbone E J Neurosci; 2003 Jan; 23(1):73-83. PubMed ID: 12514203 [TBL] [Abstract][Full Text] [Related]
6. Different contributions of calcium channel subtypes to electrical excitability of chromaffin cells in rat adrenal slices. Albiñana E; Segura-Chama P; Baraibar AM; Hernández-Cruz A; Hernández-Guijo JM J Neurochem; 2015 May; 133(4):511-21. PubMed ID: 25683177 [TBL] [Abstract][Full Text] [Related]
7. Fast exocytosis mediated by T- and L-type channels in chromaffin cells: distinct voltage-dependence but similar Ca2+ -dependence. Carabelli V; Marcantoni A; Comunanza V; Carbone E Eur Biophys J; 2007 Sep; 36(7):753-62. PubMed ID: 17340096 [TBL] [Abstract][Full Text] [Related]
8. The cAMP binding protein Epac modulates Ca2+ sparks by a Ca2+/calmodulin kinase signalling pathway in rat cardiac myocytes. Pereira L; Métrich M; Fernández-Velasco M; Lucas A; Leroy J; Perrier R; Morel E; Fischmeister R; Richard S; Bénitah JP; Lezoualc'h F; Gómez AM J Physiol; 2007 Sep; 583(Pt 2):685-94. PubMed ID: 17599964 [TBL] [Abstract][Full Text] [Related]
9. Properties of a T-type Ca2+channel-activated slow afterhyperpolarization in thalamic paraventricular nucleus and other thalamic midline neurons. Zhang L; Renaud LP; Kolaj M J Neurophysiol; 2009 Jun; 101(6):2741-50. PubMed ID: 19321637 [TBL] [Abstract][Full Text] [Related]
10. Modulation of voltage-dependent calcium currents by serotonin in acutely isolated rat amygdala neurons. Lin CH; Huang YC; Tsai JJ; Gean PW Synapse; 2001 Sep; 41(4):351-9. PubMed ID: 11494406 [TBL] [Abstract][Full Text] [Related]
11. Distinct potentiation of L-type currents and secretion by cAMP in rat chromaffin cells. Carabelli V; Giancippoli A; Baldelli P; Carbone E; Artalejo AR Biophys J; 2003 Aug; 85(2):1326-37. PubMed ID: 12885675 [TBL] [Abstract][Full Text] [Related]
13. Evidence that the anti-spasmogenic effect of the beta-adrenoceptor agonist, isoprenaline, on guinea-pig trachealis is not mediated by cyclic AMP-dependent protein kinase. Spicuzza L; Belvisi MG; Birrell MA; Barnes PJ; Hele DJ; Giembycz MA Br J Pharmacol; 2001 Aug; 133(8):1201-12. PubMed ID: 11498504 [TBL] [Abstract][Full Text] [Related]
14. Augmentation of Cav3.2 T-type calcium channel activity by cAMP-dependent protein kinase A. Kim JA; Park JY; Kang HW; Huh SU; Jeong SW; Lee JH J Pharmacol Exp Ther; 2006 Jul; 318(1):230-7. PubMed ID: 16569752 [TBL] [Abstract][Full Text] [Related]
15. Off-target effect of the Epac agonist 8-pCPT-2'-O-Me-cAMP on P2Y12 receptors in blood platelets. Herfindal L; Nygaard G; Kopperud R; Krakstad C; Døskeland SO; Selheim F Biochem Biophys Res Commun; 2013 Aug; 437(4):603-8. PubMed ID: 23850619 [TBL] [Abstract][Full Text] [Related]
16. Serotonergic modulation of persistent sodium currents and membrane excitability via cyclic AMP-protein kinase A cascade in mesencephalic V neurons. Tanaka S; Chandler SH J Neurosci Res; 2006 May; 83(7):1362-72. PubMed ID: 16557576 [TBL] [Abstract][Full Text] [Related]
17. Low-threshold exocytosis induced by cAMP-recruited CaV3.2 (alpha1H) channels in rat chromaffin cells. Giancippoli A; Novara M; de Luca A; Baldelli P; Marcantoni A; Carbone E; Carabelli V Biophys J; 2006 Mar; 90(5):1830-41. PubMed ID: 16361341 [TBL] [Abstract][Full Text] [Related]
18. Protein kinase A regulation of T-type Ca2+ channels in rat cerebral arterial smooth muscle. Harraz OF; Welsh DG J Cell Sci; 2013 Jul; 126(Pt 13):2944-54. PubMed ID: 23613468 [TBL] [Abstract][Full Text] [Related]
19. Cyclic AMP induces integrin-mediated cell adhesion through Epac and Rap1 upon stimulation of the beta 2-adrenergic receptor. Rangarajan S; Enserink JM; Kuiperij HB; de Rooij J; Price LS; Schwede F; Bos JL J Cell Biol; 2003 Feb; 160(4):487-93. PubMed ID: 12578910 [TBL] [Abstract][Full Text] [Related]
20. Activation of BKCa channels via cyclic AMP- and cyclic GMP-dependent protein kinases by eugenosedin-A in rat basilar artery myocytes. Wu BN; Chen CF; Hong YR; Howng SL; Lin YL; Chen IJ Br J Pharmacol; 2007 Oct; 152(3):374-85. PubMed ID: 17700725 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]