These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 15133159)
1. Accessibility of introduced cysteines in chemoreceptor transmembrane helices reveals boundaries interior to bracketing charged residues. Boldog T; Hazelbauer GL Protein Sci; 2004 Jun; 13(6):1466-75. PubMed ID: 15133159 [TBL] [Abstract][Full Text] [Related]
2. Diagnostic cross-linking of paired cysteine pairs demonstrates homologous structures for two chemoreceptor domains with low sequence identity. Lai WC; Peach ML; Lybrand TP; Hazelbauer GL Protein Sci; 2006 Jan; 15(1):94-101. PubMed ID: 16322572 [TBL] [Abstract][Full Text] [Related]
3. A fluorescence method to define transmembrane alpha-helices in membrane proteins: studies with bacterial diacylglycerol kinase. Jittikoon J; East JM; Lee AG Biochemistry; 2007 Sep; 46(38):10950-9. PubMed ID: 17722884 [TBL] [Abstract][Full Text] [Related]
4. Role and location of the unusual redox-active cysteines in the hydrophobic domain of the transmembrane electron transporter DsbD. Katzen F; Beckwith J Proc Natl Acad Sci U S A; 2003 Sep; 100(18):10471-6. PubMed ID: 12925743 [TBL] [Abstract][Full Text] [Related]
5. Quantitative approaches to utilizing mutational analysis and disulfide crosslinking for modeling a transmembrane domain. Lee GF; Hazelbauer GL Protein Sci; 1995 Jun; 4(6):1100-7. PubMed ID: 7549874 [TBL] [Abstract][Full Text] [Related]
6. Modeling the transmembrane domain of bacterial chemoreceptors. Peach ML; Hazelbauer GL; Lybrand TP Protein Sci; 2002 Apr; 11(4):912-23. PubMed ID: 11910034 [TBL] [Abstract][Full Text] [Related]
7. Site-directed spin labeling of a bacterial chemoreceptor reveals a dynamic, loosely packed transmembrane domain. Barnakov A; Altenbach C; Barnakova L; Hubbell WL; Hazelbauer GL Protein Sci; 2002 Jun; 11(6):1472-81. PubMed ID: 12021446 [TBL] [Abstract][Full Text] [Related]
8. Deducing the organization of a transmembrane domain by disulfide cross-linking. The bacterial chemoreceptor Trg. Lee GF; Burrows GG; Lebert MR; Dutton DP; Hazelbauer GL J Biol Chem; 1994 Nov; 269(47):29920-7. PubMed ID: 7961989 [TBL] [Abstract][Full Text] [Related]
9. Accessibility and environment probing using cysteine residues introduced along the putative transmembrane domain of the major coat protein of bacteriophage M13. Spruijt RB; Wolfs CJ; Verver JW; Hemminga MA Biochemistry; 1996 Aug; 35(32):10383-91. PubMed ID: 8756694 [TBL] [Abstract][Full Text] [Related]
10. Topology and accessibility of the transmembrane helices and the sensory site in the bifunctional transporter DcuB of Escherichia coli. Bauer J; Fritsch MJ; Palmer T; Unden G Biochemistry; 2011 Jul; 50(26):5925-38. PubMed ID: 21634397 [TBL] [Abstract][Full Text] [Related]
11. Scanning cysteine accessibility of EmrE, an H+-coupled multidrug transporter from Escherichia coli, reveals a hydrophobic pathway for solutes. Mordoch SS; Granot D; Lebendiker M; Schuldiner S J Biol Chem; 1999 Jul; 274(27):19480-6. PubMed ID: 10383465 [TBL] [Abstract][Full Text] [Related]
12. The transmembrane helices of the L, M, and N subunits of Complex I from E. coli can be assigned on the basis of conservation and hydrophobic moment analysis. Vik SB FEBS Lett; 2011 Apr; 585(8):1180-4. PubMed ID: 21420404 [TBL] [Abstract][Full Text] [Related]
13. Crosslinking of membrane-embedded cysteines reveals contact points in the EmrE oligomer. Soskine M; Steiner-Mordoch S; Schuldiner S Proc Natl Acad Sci U S A; 2002 Sep; 99(19):12043-8. PubMed ID: 12221291 [TBL] [Abstract][Full Text] [Related]
14. Movements of the TolR C-terminal domain depend on TolQR ionizable key residues and regulate activity of the Tol complex. Goemaere EL; Devert A; Lloubès R; Cascales E J Biol Chem; 2007 Jun; 282(24):17749-57. PubMed ID: 17442676 [TBL] [Abstract][Full Text] [Related]
15. Upstream charged and hydrophobic residues impact the timing of membrane insertion of transmembrane helices. Nicolaus F; Ibrahimi F; den Besten A; von Heijne G FEBS Lett; 2022 Apr; 596(8):1004-1012. PubMed ID: 35038773 [TBL] [Abstract][Full Text] [Related]
16. The Pf3 coat protein contacts TM1 and TM3 of YidC during membrane biogenesis. Klenner C; Yuan J; Dalbey RE; Kuhn A FEBS Lett; 2008 Dec; 582(29):3967-72. PubMed ID: 18996118 [TBL] [Abstract][Full Text] [Related]
17. Membrane binding by MinD involves insertion of hydrophobic residues within the C-terminal amphipathic helix into the bilayer. Zhou H; Lutkenhaus J J Bacteriol; 2003 Aug; 185(15):4326-35. PubMed ID: 12867440 [TBL] [Abstract][Full Text] [Related]
18. Detecting the conformational change of transmembrane signaling in a bacterial chemoreceptor by measuring effects on disulfide cross-linking in vivo. Hughson AG; Hazelbauer GL Proc Natl Acad Sci U S A; 1996 Oct; 93(21):11546-51. PubMed ID: 8876172 [TBL] [Abstract][Full Text] [Related]
19. Conserved features of the MlaD domain aid the trafficking of hydrophobic molecules. Dutta A; Chandravanshi M; Kanaujia SP Proteins; 2021 Nov; 89(11):1473-1488. PubMed ID: 34196044 [TBL] [Abstract][Full Text] [Related]
20. Defining membrane spanning domains and crucial membrane-localized acidic amino acid residues for K⁺ transport of a Kup/HAK/KT-type Escherichia coli potassium transporter. Sato Y; Nanatani K; Hamamoto S; Shimizu M; Takahashi M; Tabuchi-Kobayashi M; Mizutani A; Schroeder JI; Souma S; Uozumi N J Biochem; 2014 May; 155(5):315-23. PubMed ID: 24519967 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]