BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 15133495)

  • 1. RUNX1 transformation of primary embryonic fibroblasts is revealed in the absence of p53.
    Wotton SF; Blyth K; Kilbey A; Jenkins A; Terry A; Bernardin-Fried F; Friedman AD; Baxter EW; Neil JC; Cameron ER
    Oncogene; 2004 Jul; 23(32):5476-86. PubMed ID: 15133495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Runx genes: lineage-specific oncogenes and tumor suppressors.
    Cameron ER; Neil JC
    Oncogene; 2004 May; 23(24):4308-14. PubMed ID: 15156187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptional cross-regulation of RUNX1 by RUNX3 in human B cells.
    Spender LC; Whiteman HJ; Karstegl CE; Farrell PJ
    Oncogene; 2005 Mar; 24(11):1873-81. PubMed ID: 15688019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of RUNX family members in transcriptional repression and gene silencing.
    Durst KL; Hiebert SW
    Oncogene; 2004 May; 23(24):4220-4. PubMed ID: 15156176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oncogenic potential of the RUNX gene family: 'overview'.
    Ito Y
    Oncogene; 2004 May; 23(24):4198-208. PubMed ID: 15156173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of v-Abl transformation by p53 and p19ARF.
    Cong F; Zou X; Hinrichs K; Calame K; Goff SP
    Oncogene; 1999 Dec; 18(54):7731-9. PubMed ID: 10618713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Runx1 promotes angiogenesis by downregulation of insulin-like growth factor-binding protein-3.
    Iwatsuki K; Tanaka K; Kaneko T; Kazama R; Okamoto S; Nakayama Y; Ito Y; Satake M; Takahashi S; Miyajima A; Watanabe T; Hara T
    Oncogene; 2005 Feb; 24(7):1129-37. PubMed ID: 15592512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proviral insertion indicates a dominant oncogenic role for Runx1/AML-1 in T-cell lymphoma.
    Wotton S; Stewart M; Blyth K; Vaillant F; Kilbey A; Neil JC; Cameron ER
    Cancer Res; 2002 Dec; 62(24):7181-5. PubMed ID: 12499254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Upstream and downstream targets of RUNX proteins.
    Otto F; Lübbert M; Stock M
    J Cell Biochem; 2003 May; 89(1):9-18. PubMed ID: 12682904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Runx1 transcription factor controls CSF-1-dependent and -independent growth and survival of macrophages.
    Himes SR; Cronau S; Mulford C; Hume DA
    Oncogene; 2005 Aug; 24(34):5278-86. PubMed ID: 16007221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellular senescence induced by p53-ras cooperation is independent of p21waf1 in murine embryo fibroblasts.
    Castro ME; del Valle Guijarro M; Moneo V; Carnero A
    J Cell Biochem; 2004 Jun; 92(3):514-24. PubMed ID: 15156563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting the oligomerization domain of ETO interferes with RUNX1/ETO oncogenic activity in t(8;21)-positive leukemic cells.
    Wichmann C; Chen L; Heinrich M; Baus D; Pfitzner E; Zörnig M; Ottmann OG; Grez M
    Cancer Res; 2007 Mar; 67(5):2280-9. PubMed ID: 17332359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Point mutations in the RUNX1/AML1 gene: another actor in RUNX leukemia.
    Osato M
    Oncogene; 2004 May; 23(24):4284-96. PubMed ID: 15156185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic inactivation of the transcription factor TIF-IA leads to nucleolar disruption, cell cycle arrest, and p53-mediated apoptosis.
    Yuan X; Zhou Y; Casanova E; Chai M; Kiss E; Gröne HJ; Schütz G; Grummt I
    Mol Cell; 2005 Jul; 19(1):77-87. PubMed ID: 15989966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. KAI1 promoter activity is dependent on p53, junB and AP2: evidence for a possible mechanism underlying loss of KAI1 expression in cancer cells.
    Marreiros A; Dudgeon K; Dao V; Grimm MO; Czolij R; Crossley M; Jackson P
    Oncogene; 2005 Jan; 24(4):637-49. PubMed ID: 15580298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. p53-dependent translational control of senescence and transformation via 4E-BPs.
    Petroulakis E; Parsyan A; Dowling RJ; LeBacquer O; Martineau Y; Bidinosti M; Larsson O; Alain T; Rong L; Mamane Y; Paquet M; Furic L; Topisirovic I; Shahbazian D; Livingstone M; Costa-Mattioli M; Teodoro JG; Sonenberg N
    Cancer Cell; 2009 Nov; 16(5):439-46. PubMed ID: 19878875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and regulated expression of mammalian RUNX genes.
    Levanon D; Groner Y
    Oncogene; 2004 May; 23(24):4211-9. PubMed ID: 15156175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduction of total E2F/DP activity induces senescence-like cell cycle arrest in cancer cells lacking functional pRB and p53.
    Maehara K; Yamakoshi K; Ohtani N; Kubo Y; Takahashi A; Arase S; Jones N; Hara E
    J Cell Biol; 2005 Feb; 168(4):553-60. PubMed ID: 15716376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The RUNX genes: gain or loss of function in cancer.
    Blyth K; Cameron ER; Neil JC
    Nat Rev Cancer; 2005 May; 5(5):376-87. PubMed ID: 15864279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tumor suppressor activity of RUNX3.
    Bae SC; Choi JK
    Oncogene; 2004 May; 23(24):4336-40. PubMed ID: 15156190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.