These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 15133619)

  • 1. The role of stress in the growth of a multicell spheroid.
    Ambrosi D; Mollica F
    J Math Biol; 2004 May; 48(5):477-99. PubMed ID: 15133619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mathematical modeling of the proliferation gradient in multicellular tumor spheroids.
    Michel T; Fehrenbach J; Lobjois V; Laurent J; Gomes A; Colin T; Poignard C
    J Theor Biol; 2018 Dec; 458():133-147. PubMed ID: 30145131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stresses in growing soft tissues.
    Volokh KY
    Acta Biomater; 2006 Sep; 2(5):493-504. PubMed ID: 16793355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting the growth of glioblastoma multiforme spheroids using a multiphase porous media model.
    Mascheroni P; Stigliano C; Carfagna M; Boso DP; Preziosi L; Decuzzi P; Schrefler BA
    Biomech Model Mechanobiol; 2016 Oct; 15(5):1215-28. PubMed ID: 26746883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of growth-induced stress from the surrounding medium on the development of multicell spheroids.
    Chen CY; Byrne HM; King JR
    J Math Biol; 2001 Sep; 43(3):191-220. PubMed ID: 11681526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mathematical modelling of drug transport in tumour multicell spheroids and monolayer cultures.
    Ward JP; King JR
    Math Biosci; 2003 Feb; 181(2):177-207. PubMed ID: 12445761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulating growth dynamics and radiation response of avascular tumour spheroids-model validation in the case of an EMT6/Ro multicellular spheroid.
    Zacharaki EI; Stamatakos GS; Nikita KS; Uzunoglu NK
    Comput Methods Programs Biomed; 2004 Dec; 76(3):193-206. PubMed ID: 15501506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A multiscale model for heterogeneous tumor spheroid in vitro.
    Chen Z; Zou Y
    Math Biosci Eng; 2018 Apr; 15(2):361-392. PubMed ID: 29161840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth of confined cancer spheroids: a combined experimental and mathematical modelling approach.
    Loessner D; Flegg JA; Byrne HM; Clements JA; Hutmacher DW
    Integr Biol (Camb); 2013 Mar; 5(3):597-605. PubMed ID: 23388834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling mechanical inhomogeneities in small populations of proliferating monolayers and spheroids.
    Lejeune E; Linder C
    Biomech Model Mechanobiol; 2018 Jun; 17(3):727-743. PubMed ID: 29197990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational challenges of tumor spheroid modeling.
    Chignola R; Fabbro AD; Farina M; Milotti E
    J Bioinform Comput Biol; 2011 Aug; 9(4):559-77. PubMed ID: 21776609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The migration of cells in multicell tumor spheroids.
    Pettet GJ; Please CP; Tindall MJ; McElwain DL
    Bull Math Biol; 2001 Mar; 63(2):231-57. PubMed ID: 11276525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental estimation of stored stress within spherical microtissues : What can and cannot be inferred from cutting experiments.
    Colin T; Dechristé G; Fehrenbach J; Guillaume L; Lobjois V; Poignard C
    J Math Biol; 2018 Oct; 77(4):1073-1092. PubMed ID: 29736873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling the internalization of labelled cells in tumour spheroids.
    Thompson KE; Byrne HM
    Bull Math Biol; 1999 Jul; 61(4):601-23. PubMed ID: 17883217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mathematical modelling of microtumour infiltration based on in vitro experiments.
    Luján E; Guerra LN; Soba A; Visacovsky N; Gandía D; Calvo JC; Suárez C
    Integr Biol (Camb); 2016 Aug; 8(8):879-85. PubMed ID: 27466056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stress clamp experiments on multicellular tumor spheroids.
    Montel F; Delarue M; Elgeti J; Malaquin L; Basan M; Risler T; Cabane B; Vignjevic D; Prost J; Cappello G; Joanny JF
    Phys Rev Lett; 2011 Oct; 107(18):188102. PubMed ID: 22107677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative analysis of tumour spheroid structure.
    Browning AP; Sharp JA; Murphy RJ; Gunasingh G; Lawson B; Burrage K; Haass NK; Simpson M
    Elife; 2021 Nov; 10():. PubMed ID: 34842141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formulation and numerical simulations of a continuum model of avascular tumor growth.
    Mahmood MS; Mahmood S; Dobrota D
    Math Biosci; 2011 Jun; 231(2):159-71. PubMed ID: 21396381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellular automata coupled with steady-state nutrient solution permit simulation of large-scale growth of tumours.
    Shrestha SM; Joldes GR; Wittek A; Miller K
    Int J Numer Method Biomed Eng; 2013 Apr; 29(4):542-59. PubMed ID: 23382053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear diffusion of a growth inhibitory factor in multicell spheroids.
    Chaplain MA; Benson DL; Maini PK
    Math Biosci; 1994 May; 121(1):1-13. PubMed ID: 8204987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.