These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 15133934)

  • 41. Monotonicity and error type differentiability in performance measures for target detection and tracking in video.
    Leichter I; Krupka E
    IEEE Trans Pattern Anal Mach Intell; 2013 Oct; 35(10):2553-60. PubMed ID: 23969397
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Measurement of skin stretch using digital image speckle correlation.
    Staloff IA; Rafailovitch M
    Skin Res Technol; 2008 Aug; 14(3):298-303. PubMed ID: 19159375
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Calibration by correlation using metric embedding from nonmetric similarities.
    Censi A; Scaramuzza D
    IEEE Trans Pattern Anal Mach Intell; 2013 Oct; 35(10):2357-70. PubMed ID: 23969382
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Outward-looking circular motion analysis of large image sequences.
    Jiang G; Wei Y; Quan L; Tsui HT; Shum HY
    IEEE Trans Pattern Anal Mach Intell; 2005 Feb; 27(2):271-7. PubMed ID: 15688564
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Tracking the optic nervehead in OCT video using dual eigenspaces and an adaptive vascular distribution model.
    Koozekanani D; Boyer KL; Roberts C
    IEEE Trans Med Imaging; 2003 Dec; 22(12):1519-36. PubMed ID: 14649743
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A failure model for ligaments.
    Liao H; Belkoff SM
    J Biomech; 1999 Feb; 32(2):183-8. PubMed ID: 10052924
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Estrogen-dependent tensile properties of the rabbit knee medial collateral ligament.
    Räsänen T; Messner K
    Scand J Med Sci Sports; 2000 Feb; 10(1):20-7. PubMed ID: 10693608
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Microstrain fields for cortical bone in uniaxial tension: optical analysis method.
    Kim DG; Brunski JB; Nicolella DP
    Proc Inst Mech Eng H; 2005; 219(2):119-28. PubMed ID: 15819483
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Machine vision photogrammetry: a technique for measurement of microstructural strain in cortical bone.
    Nicolella DP; Nicholls AE; Lankford J; Davy DT
    J Biomech; 2001 Jan; 34(1):135-9. PubMed ID: 11425075
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Camera array-based digital image correlation for high-resolution strain measurement.
    Shao X; Chen Z; Dai X; He X
    Rev Sci Instrum; 2018 Oct; 89(10):105110. PubMed ID: 30399961
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Contribution of the cortex to epiphyseal strength. The upper tibia studied in cadavers.
    Hvid I; Jensen J; Nielsen S
    Acta Orthop Scand; 1985 Jun; 56(3):256-9. PubMed ID: 4036579
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Laser speckle photography to measure surface displacements on cortical bone--verification of an automated analysis system.
    Mo N; Shelton JC
    Med Eng Phys; 1998 Nov; 20(8):594-601. PubMed ID: 9888238
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Robust sub-micrometer displacement measurement using dual wavelength speckle correlation.
    Farsad M; Evans C; Farahi F
    Opt Express; 2015 Jun; 23(11):14960-72. PubMed ID: 26072852
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Calibration characteristics of a video dimension analyser (VDA) system.
    Lam TC; Frank CB; Shrive NG
    J Biomech; 1992 Oct; 25(10):1227-31. PubMed ID: 1400523
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Speckle shearing photography: a tool for direct measurement of surface strains.
    Rastogi PK
    Appl Opt; 1998 Mar; 37(8):1292-8. PubMed ID: 18268716
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Measurement of time-varying displacement fields by multiple-exposure speckle photography.
    Huntley JM; Field JE
    Appl Opt; 1986 May; 25(10):1665. PubMed ID: 18231395
    [No Abstract]   [Full Text] [Related]  

  • 57. Optical Measurement of Ligament Strain: Opportunities and Limitations for Intraoperative Application.
    Marx C; Wulff P; Fink C; Baumgarten D
    Sensors (Basel); 2023 Aug; 23(17):. PubMed ID: 37687943
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An in-situ fluorescence-based optical extensometry system for imaging mechanically loaded bone.
    Price C; Li W; Novotny JE; Wang L
    J Orthop Res; 2010 Jun; 28(6):805-11. PubMed ID: 20041487
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Non-contact strain measurement of biological tissue.
    Sanghavi P; Bose D; Kerrigan J; Madeley NJ; Crandall J
    Biomed Sci Instrum; 2004; 40():51-6. PubMed ID: 15133934
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A 3D shape constraint on video.
    Ji H; Fermuller C
    IEEE Trans Pattern Anal Mach Intell; 2006 Jun; 28(6):1018-23. PubMed ID: 16724596
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.