BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 15133951)

  • 1. Electric field penetration depth of myocardial surface catheters and the measurement of myocardial resistivity.
    Kottam A; Pearce JA
    Biomed Sci Instrum; 2004; 40():155-60. PubMed ID: 15133951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of instrumentation and data-acquisition system for complex admittance measurement.
    Raghavan K; Wei CL; Kottam A; Altman DG; Fernandez DJ; Reyes M; Valvano JW; Feldman MD; Pearce JA
    Biomed Sci Instrum; 2004; 40():453-7. PubMed ID: 15134000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonlinear conductance-volume relationship for murine conductance catheter measurement system.
    Wei CL; Valvano JW; Feldman MD; Pearce JA
    IEEE Trans Biomed Eng; 2005 Oct; 52(10):1654-61. PubMed ID: 16235651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The trans-cardiac conductance method for on-line measurement of left ventricular volume: assessment of parallel conductance offset volume.
    Staal EM; Steendijk P; Baan J
    IEEE Trans Biomed Eng; 2003 Feb; 50(2):234-40. PubMed ID: 12665037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parametric EIT for monitoring cardiac stroke volume.
    Zlochiver S; Freimark D; Arad M; Adunsky A; Abboud S
    Physiol Meas; 2006 May; 27(5):S139-46. PubMed ID: 16636406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The non-invasive assessment of stroke volume and cardiac output by impedance cardiography: a review.
    Newman DG; Callister R
    Aviat Space Environ Med; 1999 Aug; 70(8):780-9. PubMed ID: 10447052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catheter-based impedance measurements in the right atrium for continuously monitoring hematocrit and estimating blood viscosity changes; an in vivo feasibility study in swine.
    Pop GA; Chang ZY; Slager CJ; Kooij BJ; van Deel ED; Moraru L; Quak J; Meijer GC; Duncker DJ
    Biosens Bioelectron; 2004 Jul; 19(12):1685-93. PubMed ID: 15142603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of the spatial sensitivity of conductance/admittance catheter ventricular volume estimation.
    Larson ER; Feldman MD; Valvano JW; Pearce JA
    IEEE Trans Biomed Eng; 2013 Aug; 60(8):2316-24. PubMed ID: 23559022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic detection of detached and erroneous electrodes in electrical impedance tomography.
    Asfaw Y; Adler A
    Physiol Meas; 2005 Apr; 26(2):S175-83. PubMed ID: 15798230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acute evaluation of transthoracic impedance vectors using ICD leads.
    Gottfridsson C; Daum D; Kennergren C; Ramuzat A; Willems R; Edvardsson N
    Pacing Clin Electrophysiol; 2009 Jun; 32(6):762-71. PubMed ID: 19545339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A probe for organ impedance measurement.
    Paulson KS; Pidcock MK; McLeod CN
    IEEE Trans Biomed Eng; 2004 Oct; 51(10):1838-44. PubMed ID: 15490831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EIT images of ventilation: what contributes to the resistivity changes?
    Zhang J; Patterson RP
    Physiol Meas; 2005 Apr; 26(2):S81-92. PubMed ID: 15798249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A finite-element study of the effects of electrode position on the measured impedance change in impedance cardiography.
    Wang Y; Haynor DR; Kim Y
    IEEE Trans Biomed Eng; 2001 Dec; 48(12):1390-401. PubMed ID: 11759920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Volume catheter parallel conductance varies between end-systole and end-diastole.
    Wei CL; Valvano JW; Feldman MD; Nahrendorf M; Peshock R; Pearce JA
    IEEE Trans Biomed Eng; 2007 Aug; 54(8):1480-9. PubMed ID: 17694869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of changes in cardiac output from the electrical impedance waveform in the forearm.
    Wang JJ; Wang PW; Liu CP; Lin SK; Hu WC; Kao T
    Physiol Meas; 2007 Sep; 28(9):989-99. PubMed ID: 17827648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accuracy of the conductance catheter for measurement of ventricular volumes seen clinically: effects of electric field homogeneity and parallel conductance.
    Wu CC; Skalak TC; Schwenk TR; Mahler CM; Anne A; Finnerty PW; Haber HL; Weikle RM; Feldman MD
    IEEE Trans Biomed Eng; 1997 Apr; 44(4):266-77. PubMed ID: 9125809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of the optimum level of electrode placement for the evaluation of absolute lung resistivity with the Mk3.5 EIT system.
    Nebuya S; Noshiro M; Yonemoto A; Tateno S; Brown BH; Smallwood RH; Milnes P
    Physiol Meas; 2006 May; 27(5):S129-37. PubMed ID: 16636404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of fiber orientation on volume measurement using conductance catheter techniques.
    Thaijiam C; Gale TJ
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5981-4. PubMed ID: 17947175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-invasive beat-to-beat cardiac output monitoring by an improved method of transthoracic bioimpedance measurement.
    Fortin J; Habenbacher W; Heller A; Hacker A; Grüllenberger R; Innerhofer J; Passath H; Wagner Ch; Haitchi G; Flotzinger D; Pacher R; Wach P
    Comput Biol Med; 2006 Nov; 36(11):1185-203. PubMed ID: 16131462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The four-electrode resistivity technique in anisotropic media: theoretical analysis and application on myocardial tissue in vivo.
    Steendijk P; Mur G; Van Der Velde ET; Baan J
    IEEE Trans Biomed Eng; 1993 Nov; 40(11):1138-48. PubMed ID: 8307598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.