These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 15133958)

  • 1. Dynamic three-dimensional reconstruction and modeling of cardiovascular anatomy in children with congenital heart disease using biplane angiography.
    Lanning C; Chen SY; Hansgen A; Chang D; Chan KC; Shandas R
    Biomed Sci Instrum; 2004; 40():200-5. PubMed ID: 15133958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stereolithographic reproduction of complex cardiac morphology based on high spatial resolution imaging.
    Greil GF; Wolf I; Kuettner A; Fenchel M; Miller S; Martirosian P; Schick F; Oppitz M; Meinzer HP; Sieverding L
    Clin Res Cardiol; 2007 Mar; 96(3):176-85. PubMed ID: 17225916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel approach for 3-d reconstruction of coronary arteries from two uncalibrated angiographic images.
    Yang J; Wang Y; Liu Y; Tang S; Chen W
    IEEE Trans Image Process; 2009 Jul; 18(7):1563-72. PubMed ID: 19414289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of angiographic CT imaging in the cardiac catheterization laboratory for congenital heart disease.
    Glatz AC; Zhu X; Gillespie MJ; Hanna BD; Rome JJ
    JACC Cardiovasc Imaging; 2010 Nov; 3(11):1149-57. PubMed ID: 21071003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time three dimensional CT and MRI to guide interventions for congenital heart disease and acquired pulmonary vein stenosis.
    Suntharos P; Setser RM; Bradley-Skelton S; Prieto LR
    Int J Cardiovasc Imaging; 2017 Oct; 33(10):1619-1626. PubMed ID: 28455631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using 3D Physical Modeling to Plan Surgical Corrections of Complex Congenital Heart Defects.
    Vodiskar J; Kütting M; Steinseifer U; Vazquez-Jimenez JF; Sonntag SJ
    Thorac Cardiovasc Surg; 2017 Jan; 65(1):31-35. PubMed ID: 27177266
    [No Abstract]   [Full Text] [Related]  

  • 7. Computed Tomography in Congenital Heart Disease: Clinical Applications and Technical Considerations.
    Kulkarni A; Hsu HH; Ou P; Kutty S
    Echocardiography; 2016 Apr; 33(4):629-40. PubMed ID: 26670095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In-vivo coronary flow profiling based on biplane angiograms: influence of geometric simplifications on the three-dimensional reconstruction and wall shear stress calculation.
    Wellnhofer E; Goubergrits L; Kertzscher U; Affeld K
    Biomed Eng Online; 2006 Jun; 5():39. PubMed ID: 16774680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coronary artery WSS profiling using a geometry reconstruction based on biplane angiography.
    Goubergrits L; Wellnhofer E; Kertzscher U; Affeld K; Petz C; Hege HC
    Ann Biomed Eng; 2009 Apr; 37(4):682-91. PubMed ID: 19229618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D Printing in Complex Congenital Heart Disease: Across a Spectrum of Age, Pathology, and Imaging Techniques.
    Anwar S; Singh GK; Varughese J; Nguyen H; Billadello JJ; Sheybani EF; Woodard PK; Manning P; Eghtesady P
    JACC Cardiovasc Imaging; 2017 Aug; 10(8):953-956. PubMed ID: 27450874
    [No Abstract]   [Full Text] [Related]  

  • 11. Stress analysis using anatomically realistic coronary tree.
    Wu HC; Chen SY; Shroff SG; Carroll JD
    Med Phys; 2003 Nov; 30(11):2927-36. PubMed ID: 14655940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of three-dimensional angiographic data obtained by self-calibration of multiview imaging.
    Noël PB; Hoffmann KR; Kasodekar S; Walczak AM; Schafer S
    Med Phys; 2006 Oct; 33(10):3901-11. PubMed ID: 17089852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved determination of biplane imaging geometry from two projection images and its application to three-dimensional reconstruction of coronary arterial trees.
    Chen SY; Metz CE
    Med Phys; 1997 May; 24(5):633-54. PubMed ID: 9167155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A quantitative analysis of 3-D coronary modeling from two or more projection images.
    Movassaghi B; Rasche V; Grass M; Viergever MA; Niessen WJ
    IEEE Trans Med Imaging; 2004 Dec; 23(12):1517-31. PubMed ID: 15575409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interventional 4D motion estimation and reconstruction of cardiac vasculature without motion periodicity assumption.
    Rohkohl C; Lauritsch G; Biller L; Prümmer M; Boese J; Hornegger J
    Med Image Anal; 2010 Oct; 14(5):687-94. PubMed ID: 20573539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional tracking of coronary arteries from biplane angiographic sequences using parametrically deformable models.
    Sarry L; Boire JY
    IEEE Trans Med Imaging; 2001 Dec; 20(12):1341-51. PubMed ID: 11811834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A simple model for variant congenital cardiac anomalies.
    Chen HM; Chiu CC; Wu JR; Chen YF
    Thorac Cardiovasc Surg; 2007 Oct; 55(7):433-7. PubMed ID: 17902065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Virtual medicine: Utilization of the advanced cardiac imaging patient avatar for procedural planning and facilitation.
    Shinbane JS; Saxon LA
    J Cardiovasc Comput Tomogr; 2018; 12(1):16-27. PubMed ID: 29198733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accuracy and Specific Value of Cardiovascular 3D-Models in Pediatric CT-Angiography.
    Hammon M; Rompel O; Seuss H; Dittrich S; Uder M; Rüffer A; Cesnjevar R; Ehret N; Glöckler M
    Pediatr Cardiol; 2017 Dec; 38(8):1540-1547. PubMed ID: 28762166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D/3D registration of coronary CTA and biplane XA reconstructions for improved image guidance.
    Dibildox G; Baka N; Punt M; Aben JP; Schultz C; Niessen W; van Walsum T
    Med Phys; 2014 Sep; 41(9):091909. PubMed ID: 25186396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.