BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 15134340)

  • 1. Effects of reducing agents on glutathione metabolism and the function of carotid body chemoreceptor cells.
    Gonzalez C; Sanz-Alyayate G; Agapito MT; Obeso A
    Biol Chem; 2004; 385(3-4):265-74. PubMed ID: 15134340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of mitochondrial poisons on glutathione redox potential and carotid body chemoreceptor activity.
    Gomez-Niño A; Agapito MT; Obeso A; Gonzalez C
    Respir Physiol Neurobiol; 2009 Jan; 165(1):104-11. PubMed ID: 18996500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modification of the glutathione redox environment and chemoreceptor cell responses.
    Gómez-Niño A; Agapito MT; Obeso A; González C
    Adv Exp Med Biol; 2006; 580():325-30; discussion 351-9. PubMed ID: 16683739
    [No Abstract]   [Full Text] [Related]  

  • 4. Role of glutathione redox state in oxygen sensing by carotid body chemoreceptor cells.
    Gonzalez C; Sanz-Alfayate G; Obeso A; Agapito MT
    Methods Enzymol; 2004; 381():40-71. PubMed ID: 15063665
    [No Abstract]   [Full Text] [Related]  

  • 5. Reduced to oxidized glutathione ratios and oxygen sensing in calf and rabbit carotid body chemoreceptor cells.
    Sanz-Alfayate G; Obeso A; Agapito MT; González C
    J Physiol; 2001 Nov; 537(Pt 1):209-20. PubMed ID: 11711574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasticity in cultured carotid body chemoreceptors: environmental modulation of GAP-43 and neurofilament.
    Jackson A; Nurse C
    J Neurobiol; 1995 Apr; 26(4):485-96. PubMed ID: 7602313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. General redox environment and carotid body chemoreceptor function.
    Agapito MT; Sanz-Alfayate G; Gomez-Niño A; Gonzalez C; Obeso A
    Am J Physiol Cell Physiol; 2009 Mar; 296(3):C620-31. PubMed ID: 19144860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of low glucose on carotid body chemoreceptor cell activity studied in cultures of intact organs and in dissociated cells.
    Gallego-Martin T; Fernandez-Martinez S; Rigual R; Obeso A; Gonzalez C
    Am J Physiol Cell Physiol; 2012 Apr; 302(8):C1128-40. PubMed ID: 22189552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellular distribution of oxygen sensor candidates-oxidases, cytochromes, K+-channels--in the carotid body.
    Kummer W; Yamamoto Y
    Microsc Res Tech; 2002 Nov; 59(3):234-42. PubMed ID: 12384967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of hypoxia-evoked ATP release from chemoreceptor cells of the rat carotid body.
    Buttigieg J; Nurse CA
    Biochem Biophys Res Commun; 2004 Sep; 322(1):82-7. PubMed ID: 15313176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An antagonistic interaction between A2B adenosine and D2 dopamine receptors modulates the function of rat carotid body chemoreceptor cells.
    Conde SV; Gonzalez C; Batuca JR; Monteiro EC; Obeso A
    J Neurochem; 2008 Dec; 107(5):1369-81. PubMed ID: 18823369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of iron-chelators on ion-channels and HIF-1alpha in the carotid body.
    Roy A; Li J; Baby SM; Mokashi A; Buerk DG; Lahiri S
    Respir Physiol Neurobiol; 2004 Jul; 141(2):115-23. PubMed ID: 15239962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glucose up-regulates HIF-1 alpha expression in primary cortical neurons in response to hypoxia through maintaining cellular redox status.
    Guo S; Bragina O; Xu Y; Cao Z; Chen H; Zhou B; Morgan M; Lin Y; Jiang BH; Liu KJ; Shi H
    J Neurochem; 2008 Jun; 105(5):1849-60. PubMed ID: 18266932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison between the effects of normoxia and hypoxia on antioxidant enzymes and glutathione redox state in ex vivo culture of CD34(+) cells.
    Fan J; Cai H; Yang S; Yan L; Tan W
    Comp Biochem Physiol B Biochem Mol Biol; 2008 Oct; 151(2):153-8. PubMed ID: 18625331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carotid body chemoreceptors in dissociated cell culture.
    Nurse CA; Fearon IM
    Microsc Res Tech; 2002 Nov; 59(3):249-55. PubMed ID: 12384969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Chemoreceptor function and metabolism of the carotid body in the rat].
    Samoĭlov VO; Ponomarenko GN
    Zh Evol Biokhim Fiziol; 1985; 21(5):516-21. PubMed ID: 4060945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An overview on the homeostasis of Ca2+ in chemoreceptor cells of the rabbit and rat carotid bodies.
    Conde SV; Caceres AI; Vicario I; Rocher A; Obeso A; Gonzalez C
    Adv Exp Med Biol; 2006; 580():215-22; discussion 351-9. PubMed ID: 16683722
    [No Abstract]   [Full Text] [Related]  

  • 18. Pronounced depression by propofol on carotid body response to CO2 and K+-induced carotid body activation.
    Akada S; Fagerlund MJ; Lindahl SG; Sakamoto A; Prabhakar NR; Eriksson LI
    Respir Physiol Neurobiol; 2008 Feb; 160(3):284-8. PubMed ID: 18054527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A revisit to O2 sensing and transduction in the carotid body chemoreceptors in the context of reactive oxygen species biology.
    Gonzalez C; Agapito MT; Rocher A; Gomez-Niño A; Rigual R; Castañeda J; Conde SV; Obeso A
    Respir Physiol Neurobiol; 2010 Dec; 174(3):317-30. PubMed ID: 20833275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene transfer of neuronal nitric oxide synthase to carotid body reverses enhanced chemoreceptor function in heart failure rabbits.
    Li YL; Li YF; Liu D; Cornish KG; Patel KP; Zucker IH; Channon KM; Schultz HD
    Circ Res; 2005 Aug; 97(3):260-7. PubMed ID: 15994433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.