BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

658 related articles for article (PubMed ID: 15134457)

  • 1. Alanine scanning mutagenesis of the testosterone binding site of rat 3 alpha-hydroxysteroid dehydrogenase demonstrates contact residues influence the rate-determining step.
    Heredia VV; Cooper WC; Kruger RG; Jin Y; Penning TM
    Biochemistry; 2004 May; 43(19):5832-41. PubMed ID: 15134457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissection of the physiological interconversion of 5alpha-DHT and 3alpha-diol by rat 3alpha-HSD via transient kinetics shows that the chemical step is rate-determining: effect of mutating cofactor and substrate-binding pocket residues on catalysis.
    Heredia VV; Penning TM
    Biochemistry; 2004 Sep; 43(38):12028-37. PubMed ID: 15379543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Steroid-binding site residues dictate optimal substrate positioning in rat 3alpha-hydroxysteroid dehydrogenase (3alpha-HSD or AKR1C9).
    Heredia VV; Kruger RG; Penning TM
    Chem Biol Interact; 2003 Feb; 143-144():393-400. PubMed ID: 12604226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mouse 17alpha-hydroxysteroid dehydrogenase (AKR1C21) binds steroids differently from other aldo-keto reductases: identification and characterization of amino acid residues critical for substrate binding.
    Faucher F; Cantin L; Pereira de Jésus-Tran K; Lemieux M; Luu-The V; Labrie F; Breton R
    J Mol Biol; 2007 Jun; 369(2):525-40. PubMed ID: 17442338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutagenesis of 3 alpha-hydroxysteroid dehydrogenase reveals a "push-pull" mechanism for proton transfer in aldo-keto reductases.
    Schlegel BP; Jez JM; Penning TM
    Biochemistry; 1998 Mar; 37(10):3538-48. PubMed ID: 9521675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies of the enzymic mechanism of Candida tenuis xylose reductase (AKR 2B5): X-ray structure and catalytic reaction profile for the H113A mutant.
    Kratzer R; Kavanagh KL; Wilson DK; Nidetzky B
    Biochemistry; 2004 May; 43(17):4944-54. PubMed ID: 15109252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retention of NADPH-linked quinone reductase activity in an aldo-keto reductase following mutation of the catalytic tyrosine.
    Schlegel BP; Ratnam K; Penning TM
    Biochemistry; 1998 Aug; 37(31):11003-11. PubMed ID: 9692994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Porcine recombinant dihydropyrimidine dehydrogenase: comparison of the spectroscopic and catalytic properties of the wild-type and C671A mutant enzymes.
    Rosenbaum K; Jahnke K; Curti B; Hagen WR; Schnackerz KD; Vanoni MA
    Biochemistry; 1998 Dec; 37(50):17598-609. PubMed ID: 9860876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elucidation of a complete kinetic mechanism for a mammalian hydroxysteroid dehydrogenase (HSD) and identification of all enzyme forms on the reaction coordinate: the example of rat liver 3alpha-HSD (AKR1C9).
    Cooper WC; Jin Y; Penning TM
    J Biol Chem; 2007 Nov; 282(46):33484-33493. PubMed ID: 17848571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and function of 3 alpha-hydroxysteroid dehydrogenase.
    Penning TM; Bennett MJ; Smith-Hoog S; Schlegel BP; Jez JM; Lewis M
    Steroids; 1997 Jan; 62(1):101-11. PubMed ID: 9029723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering steroid 5 beta-reductase activity into rat liver 3 alpha-hydroxysteroid dehydrogenase.
    Jez JM; Penning TM
    Biochemistry; 1998 Jul; 37(27):9695-703. PubMed ID: 9657682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Limited proteolysis and X-ray crystallography reveal the origin of substrate specificity and of the rate-limiting product release during oxidation of D-amino acids catalyzed by mammalian D-amino acid oxidase.
    Vanoni MA; Cosma A; Mazzeo D; Mattevi A; Todone F; Curti B
    Biochemistry; 1997 May; 36(19):5624-32. PubMed ID: 9153402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The arginine 276 anchor for NADP(H) dictates fluorescence kinetic transients in 3 alpha-hydroxysteroid dehydrogenase, a representative aldo-keto reductase.
    Ratnam K; Ma H; Penning TM
    Biochemistry; 1999 Jun; 38(24):7856-64. PubMed ID: 10387026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structures of human Delta4-3-ketosteroid 5beta-reductase (AKR1D1) reveal the presence of an alternative binding site responsible for substrate inhibition.
    Faucher F; Cantin L; Luu-The V; Labrie F; Breton R
    Biochemistry; 2008 Dec; 47(51):13537-46. PubMed ID: 19075558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutation of nicotinamide pocket residues in rat liver 3 alpha-hydroxysteroid dehydrogenase reveals different modes of cofactor binding.
    Ma H; Ratnam K; Penning TM
    Biochemistry; 2000 Jan; 39(1):102-9. PubMed ID: 10625484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the catalytic role of the conserved active site residue His466 of choline oxidase.
    Ghanem M; Gadda G
    Biochemistry; 2005 Jan; 44(3):893-904. PubMed ID: 15654745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conserved and nonconserved residues in the substrate binding site of 7,8-diaminopelargonic acid synthase from Escherichia coli are essential for catalysis.
    Sandmark J; Eliot AC; Famm K; Schneider G; Kirsch JF
    Biochemistry; 2004 Feb; 43(5):1213-22. PubMed ID: 14756557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering and characterization of a NADPH-utilizing cytochrome b5 reductase.
    Marohnic CC; Bewley MC; Barber MJ
    Biochemistry; 2003 Sep; 42(38):11170-82. PubMed ID: 14503867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Loop relaxation, a mechanism that explains the reduced specificity of rabbit 20alpha-hydroxysteroid dehydrogenase, a member of the aldo-keto reductase superfamily.
    Couture JF; Legrand P; Cantin L; Labrie F; Luu-The V; Breton R
    J Mol Biol; 2004 May; 339(1):89-102. PubMed ID: 15123423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3 alpha-hydroxysteroid dehydrogenase: three dimensional structure and gene regulation.
    Penning TM
    J Endocrinol; 1996 Sep; 150 Suppl():S175-87. PubMed ID: 8943801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.