BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 15134478)

  • 1. Predicting subjective judgment of best focus with objective image quality metrics.
    Cheng X; Bradley A; Thibos LN
    J Vis; 2004 Apr; 4(4):310-21. PubMed ID: 15134478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visual impact of Zernike and Seidel forms of monochromatic aberrations.
    Cheng X; Bradley A; Ravikumar S; Thibos LN
    Optom Vis Sci; 2010 May; 87(5):300-12. PubMed ID: 20351600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accuracy and precision of objective refraction from wavefront aberrations.
    Thibos LN; Hong X; Bradley A; Applegate RA
    J Vis; 2004 Apr; 4(4):329-51. PubMed ID: 15134480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential higher-order aberration cues for sphero-cylindrical refractive error development.
    Buehren T; Iskander DR; Collins MJ; Davis B
    Optom Vis Sci; 2007 Mar; 84(3):163-74. PubMed ID: 17435529
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of optical quality metrics to predict subjective quality of vision after laser in situ keratomileusis.
    Bühren J; Pesudovs K; Martin T; Strenger A; Yoon G; Kohnen T
    J Cataract Refract Surg; 2009 May; 35(5):846-55. PubMed ID: 19393883
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metrics of optical quality derived from wave aberrations predict visual performance.
    Marsack JD; Thibos LN; Applegate RA
    J Vis; 2004 Apr; 4(4):322-8. PubMed ID: 15134479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of coma and spherical aberration on depth-of-focus measured using adaptive optics and computationally blurred images.
    Legras R; Benard Y; Lopez-Gil N
    J Cataract Refract Surg; 2012 Mar; 38(3):458-69. PubMed ID: 22340606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Image metrics for predicting subjective image quality.
    Chen L; Singer B; Guirao A; Porter J; Williams DR
    Optom Vis Sci; 2005 May; 82(5):358-69. PubMed ID: 15894912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modelling the effects of secondary spherical aberration on refractive error, image quality and depth of focus.
    Xu R; Bradley A; López Gil N; Thibos LN
    Ophthalmic Physiol Opt; 2015 Jan; 35(1):28-38. PubMed ID: 25532544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement and prediction of subjective gradations of images in presence of monochromatic aberrations.
    Legras R; Benard Y
    Vision Res; 2013 Jun; 86():52-8. PubMed ID: 23624229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Higher-order aberrations in eyes with irregular corneas after laser refractive surgery.
    McCormick GJ; Porter J; Cox IG; MacRae S
    Ophthalmology; 2005 Oct; 112(10):1699-709. PubMed ID: 16095700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of image quality metrics for the prediction of subjective best focus.
    Kilintari M; Pallikaris A; Tsiklis N; Ginis HS
    Optom Vis Sci; 2010 Mar; 87(3):183-9. PubMed ID: 20125061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accommodation stimulus-response function and retinal image quality.
    Buehren T; Collins MJ
    Vision Res; 2006 May; 46(10):1633-45. PubMed ID: 16040078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences between wavefront and subjective refraction for infrared light.
    Teel DF; Jacobs RJ; Copland J; Neal DR; Thibos LN
    Optom Vis Sci; 2014 Oct; 91(10):1158-66. PubMed ID: 25148218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sphero-cylindrical error for oblique gaze as a function of the position of the centre of rotation of the eye.
    Perches S; Ares J; Collados V; Palos F
    Ophthalmic Physiol Opt; 2013 Jul; 33(4):456-66. PubMed ID: 23786385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of primary spherical aberration, spatial frequency and Stiles Crawford apodization on wavefront determined refractive error: a computational study.
    Xu R; Bradley A; Thibos LN
    Ophthalmic Physiol Opt; 2013 Jul; 33(4):444-55. PubMed ID: 23683093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accounting for the phase, spatial frequency and orientation demands of the task improves metrics based on the visual Strehl ratio.
    Young LK; Love GD; Smithson HE
    Vision Res; 2013 Sep; 90():57-67. PubMed ID: 23876993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determining the accommodative response from wavefront aberrations.
    Tarrant J; Roorda A; Wildsoet CF
    J Vis; 2010 May; 10(5):4. PubMed ID: 20616123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Is an objective refraction optimised using the visual Strehl ratio better than a subjective refraction?
    Hastings GD; Marsack JD; Nguyen LC; Cheng H; Applegate RA
    Ophthalmic Physiol Opt; 2017 May; 37(3):317-325. PubMed ID: 28370389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wave aberration of human eyes and new descriptors of image optical quality and visual performance.
    Lombardo M; Lombardo G
    J Cataract Refract Surg; 2010 Feb; 36(2):313-31. PubMed ID: 20152616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.