These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
511 related articles for article (PubMed ID: 15134725)
1. Chromophoric spin-labeled beta-lactam antibiotics for ENDOR structural characterization of reaction intermediates of class A and class C beta-lactamases. Mustafi D; Hofer JE; Huang W; Palzkill T; Makinen MW Spectrochim Acta A Mol Biomol Spectrosc; 2004 May; 60(6):1279-89. PubMed ID: 15134725 [TBL] [Abstract][Full Text] [Related]
2. Kinetics of turnover of cefotaxime by the Enterobacter cloacae P99 and GCl beta-lactamases: two free enzyme forms of the P99 beta-lactamase detected by a combination of pre- and post-steady state kinetics. Kumar S; Adediran SA; Nukaga M; Pratt RF Biochemistry; 2004 Mar; 43(9):2664-72. PubMed ID: 14992604 [TBL] [Abstract][Full Text] [Related]
3. ENDOR structural characterization of a catalytically competent acylenzyme reaction intermediate of wild-type TEM-1 beta-lactamase confirms glutamate-166 as the base catalyst. Mustafi D; Sosa-Peinado A; Makinen MW Biochemistry; 2001 Feb; 40(8):2397-409. PubMed ID: 11327860 [TBL] [Abstract][Full Text] [Related]
4. Different transition-state structures for the reactions of beta-lactams and analogous beta-sultams with serine beta-lactamases. Tsang WY; Ahmed N; Hinchliffe PS; Wood JM; Harding LP; Laws AP; Page MI J Am Chem Soc; 2005 Dec; 127(49):17556-64. PubMed ID: 16332108 [TBL] [Abstract][Full Text] [Related]
6. Kinetics and mechanism of the hydrolysis of depsipeptides catalyzed by the beta-lactamase of Enterobacter cloacae P99. Xu Y; Soto G; Hirsch KR; Pratt RF Biochemistry; 1996 Mar; 35(11):3595-603. PubMed ID: 8639511 [TBL] [Abstract][Full Text] [Related]
7. Beta-secondary and solvent deuterium kinetic isotope effects on catalysis by the Streptomyces R61 DD-peptidase: comparisons with a structurally similar class C beta-lactamase. Adediran SA; Pratt RF Biochemistry; 1999 Feb; 38(5):1469-77. PubMed ID: 9931012 [TBL] [Abstract][Full Text] [Related]
8. The D-methyl group in beta-lactamase evolution: evidence from the Y221G and GC1 mutants of the class C beta-lactamase of Enterobacter cloacae P99. Adediran SA; Zhang Z; Nukaga M; Palzkill T; Pratt RF Biochemistry; 2005 May; 44(20):7543-52. PubMed ID: 15895997 [TBL] [Abstract][Full Text] [Related]
9. On the importance of a methyl group in beta-lactamase evolution: free energy profiles and molecular modeling. Bernstein NJ; Pratt RF Biochemistry; 1999 Aug; 38(32):10499-510. PubMed ID: 10441146 [TBL] [Abstract][Full Text] [Related]
10. Kinetic and structural consequences of the leaving group in substrates of a class C beta-lactamase. Ahn YM; Pratt RF Bioorg Med Chem; 2004 Mar; 12(6):1537-42. PubMed ID: 15018927 [TBL] [Abstract][Full Text] [Related]
11. Structure of the extended-spectrum class C beta-lactamase of Enterobacter cloacae GC1, a natural mutant with a tandem tripeptide insertion. Crichlow GV; Kuzin AP; Nukaga M; Mayama K; Sawai T; Knox JR Biochemistry; 1999 Aug; 38(32):10256-61. PubMed ID: 10441119 [TBL] [Abstract][Full Text] [Related]
12. Thermodynamic evaluation of a covalently bonded transition state analogue inhibitor: inhibition of beta-lactamases by phosphonates. Nagarajan R; Pratt RF Biochemistry; 2004 Aug; 43(30):9664-73. PubMed ID: 15274621 [TBL] [Abstract][Full Text] [Related]
13. Structural basis for the extended substrate spectrum of CMY-10, a plasmid-encoded class C beta-lactamase. Kim JY; Jung HI; An YJ; Lee JH; Kim SJ; Jeong SH; Lee KJ; Suh PG; Lee HS; Lee SH; Cha SS Mol Microbiol; 2006 May; 60(4):907-16. PubMed ID: 16677302 [TBL] [Abstract][Full Text] [Related]
14. Mixed quantum mechanical/molecular mechanical (QM/MM) study of the deacylation reaction in a penicillin binding protein (PBP) versus in a class C beta-lactamase. Gherman BF; Goldberg SD; Cornish VW; Friesner RA J Am Chem Soc; 2004 Jun; 126(24):7652-64. PubMed ID: 15198613 [TBL] [Abstract][Full Text] [Related]
15. Structure and conformation of the nitroxyl spin-label ethyl 3-(2,2,5,5-tetramethylpyrrolinyl-1-oxyl)-propen-2-oate determined by electron nuclear double resonance: comparison with the structure of a spin-label substrate of carboxypeptidase A. Mustafi D; Boisvert WE; Makinen MW Biopolymers; 1990 Jan; 29(1):45-55. PubMed ID: 2158361 [TBL] [Abstract][Full Text] [Related]
16. Structure and kinetics of the beta-lactamase mutants S70A and K73H from Staphylococcus aureus PC1. Chen CC; Smith TJ; Kapadia G; Wäsch S; Zawadzke LE; Coulson A; Herzberg O Biochemistry; 1996 Sep; 35(38):12251-8. PubMed ID: 8823158 [TBL] [Abstract][Full Text] [Related]
17. Elimination of the hydrolytic water molecule in a class A beta-lactamase mutant: crystal structure and kinetics. Zawadzke LE; Chen CC; Banerjee S; Li Z; Wäsch S; Kapadia G; Moult J; Herzberg O Biochemistry; 1996 Dec; 35(51):16475-82. PubMed ID: 8987980 [TBL] [Abstract][Full Text] [Related]
18. pKa, MM, and QM studies of mechanisms of beta-lactamases and penicillin-binding proteins: acylation step. Massova I; Kollman PA J Comput Chem; 2002 Dec; 23(16):1559-76. PubMed ID: 12395425 [TBL] [Abstract][Full Text] [Related]
19. Crystal structure of extended-spectrum beta-lactamase Toho-1: insights into the molecular mechanism for catalytic reaction and substrate specificity expansion. Ibuka AS; Ishii Y; Galleni M; Ishiguro M; Yamaguchi K; Frère JM; Matsuzawa H; Sakai H Biochemistry; 2003 Sep; 42(36):10634-43. PubMed ID: 12962487 [TBL] [Abstract][Full Text] [Related]
20. Effect of an amino acid insertion into the omega loop region of a class C beta-lactamase on its substrate specificity. Nukaga M; Taniguchi K; Washio Y; Sawai T Biochemistry; 1998 Jul; 37(29):10461-8. PubMed ID: 9671516 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]