These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
85 related articles for article (PubMed ID: 15134914)
1. Competition between lithium and magnesium ions for the G-protein transducin in the guanosine 5'-diphosphate bound conformation. Srinivasan C; Toon J; Amari L; Abukhdeir AM; Hamm H; Geraldes CF; Ho YK; Mota de Freitas D J Inorg Biochem; 2004 May; 98(5):691-701. PubMed ID: 15134914 [TBL] [Abstract][Full Text] [Related]
2. Comparison of fluorescence, (31)P NMR, and (7)Li NMR spectroscopic methods for investigating Li(+)/Mg(2+) competition for biomolecules. Amari L; Layden B; Rong Q; Geraldes CF; Mota de Freitas D Anal Biochem; 1999 Jul; 272(1):1-7. PubMed ID: 10405286 [TBL] [Abstract][Full Text] [Related]
3. Competition between Li+ and Mg2+ in neuroblastoma SH-SY5Y cells: a fluorescence and 31P NMR study. Amari L; Layden B; Nikolakopoulos J; Rong Q; Mota de Freitas D; Baltazar G; Castro MM; Geraldes CF Biophys J; 1999 Jun; 76(6):2934-42. PubMed ID: 10354421 [TBL] [Abstract][Full Text] [Related]
4. Competition between Li+ and Mg2+ for the phosphate groups in the human erythrocyte membrane and ATP: an NMR and fluorescence study. Mota de Freitas D; Amari L; Srinivasan C; Rong Q; Ramasamy R; Abraha A; Geraldes CF; Boyd MK Biochemistry; 1994 Apr; 33(14):4101-10. PubMed ID: 8155627 [TBL] [Abstract][Full Text] [Related]
5. Kinetic analysis of the activation of transducin by photoexcited rhodopsin. Influence of the lateral diffusion of transducin and competition of guanosine diphosphate and guanosine triphosphate for the nucleotide site. Bruckert F; Chabre M; Vuong TM Biophys J; 1992 Sep; 63(3):616-29. PubMed ID: 1420903 [TBL] [Abstract][Full Text] [Related]
6. Effect of Li+ upon the Mg2+-dependent activation of recombinant Gialpha1. Minadeo N; Layden B; Amari LV; Thomas V; Radloff K; Srinivasan C; Hamm HE; de Freitas DM Arch Biochem Biophys; 2001 Apr; 388(1):7-12. PubMed ID: 11361143 [TBL] [Abstract][Full Text] [Related]
7. Binding of transducin to light-activated rhodopsin prevents transducin interaction with the rod cGMP phosphodiesterase gamma-subunit. Artemyev NO Biochemistry; 1997 Apr; 36(14):4188-93. PubMed ID: 9100013 [TBL] [Abstract][Full Text] [Related]
8. Affinity of transducin for photoactivated rhodopsin: dependence on nucleotide binding state. Clack JW BMB Rep; 2008 Jul; 41(7):548-53. PubMed ID: 18682040 [TBL] [Abstract][Full Text] [Related]
9. Direct observation of the complex formation of GDP-bound transducin with the rhodopsin intermediate having a visible absorption maximum in rod outer segment membranes. Morizumi T; Imai H; Shichida Y Biochemistry; 2005 Jul; 44(29):9936-43. PubMed ID: 16026166 [TBL] [Abstract][Full Text] [Related]
10. Li+/Mg2+ competition at therapeutic intracellular Li+ levels in human neuroblastoma SH-SY5Y cells. Layden B; Diven C; Minadeo N; Bryant FB; Mota de Freitas D Bipolar Disord; 2000 Sep; 2(3 Pt 1):200-4. PubMed ID: 11256688 [TBL] [Abstract][Full Text] [Related]
11. Is competition between Li+ and Mg2+ the underlying theme in the proposed mechanisms for the pharmacological action of lithium salts in bipolar disorder? Mota de Freitas D; Castro MM; Geraldes CF Acc Chem Res; 2006 Apr; 39(4):283-91. PubMed ID: 16618096 [TBL] [Abstract][Full Text] [Related]
12. Guanine nucleotides and magnesium dependence of the association states of the subunits of transducin. Deterre P; Bigay J; Pfister C; Chabre M FEBS Lett; 1984 Dec; 178(2):228-32. PubMed ID: 6595121 [TBL] [Abstract][Full Text] [Related]
13. The mechanism of aluminum-independent G-protein activation by fluoride and magnesium. 31P NMR spectroscopy and fluorescence kinetic studies. Antonny B; Sukumar M; Bigay J; Chabre M; Higashijima T J Biol Chem; 1993 Feb; 268(4):2393-402. PubMed ID: 8381408 [TBL] [Abstract][Full Text] [Related]
14. Interaction of transducin with light-activated rhodopsin protects It from proteolytic digestion by trypsin. Mazzoni MR; Hamm HE J Biol Chem; 1996 Nov; 271(47):30034-40. PubMed ID: 8939950 [TBL] [Abstract][Full Text] [Related]
15. Surfaces of interaction between Gt and rhodopsin in the GDP-bound and empty-pocket configurations. Hamm HE Adv Second Messenger Phosphoprotein Res; 1990; 24():76-82. PubMed ID: 2119661 [No Abstract] [Full Text] [Related]
16. Cooperative binding of the retinal rod G-protein, transducin, to light-activated rhodopsin. Willardson BM; Pou B; Yoshida T; Bitensky MW J Biol Chem; 1993 Mar; 268(9):6371-82. PubMed ID: 8454608 [TBL] [Abstract][Full Text] [Related]
17. Low affinity interactions of GDPbetaS and ribose- or phosphoryl-substituted GTP analogues with the heterotrimeric G protein, transducin. Zera EM; Molloy DP; Angleson JK; Lamture JB; Wensel TG; Malinski JA J Biol Chem; 1996 May; 271(22):12925-31. PubMed ID: 8662741 [TBL] [Abstract][Full Text] [Related]
18. Interaction of the retinal G-protein transducin with uracil nucleotides. Klinker JF; Seifert R Biochem Biophys Res Commun; 1999 Aug; 262(2):341-5. PubMed ID: 10462476 [TBL] [Abstract][Full Text] [Related]
19. Chemical modification of transducin with iodoacetic acid: transducin-alpha carboxymethylated at Cys(347) allows transducin binding to Light-activated rhodopsin but prevents its release in the presence of GTP. Bubis J; Ortiz JO; Möller C Arch Biochem Biophys; 2001 Nov; 395(2):146-57. PubMed ID: 11697851 [TBL] [Abstract][Full Text] [Related]
20. Receptor and betagamma binding sites in the alpha subunit of the retinal G protein transducin. Onrust R; Herzmark P; Chi P; Garcia PD; Lichtarge O; Kingsley C; Bourne HR Science; 1997 Jan; 275(5298):381-4. PubMed ID: 8994033 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]