These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 15134930)
1. Studies on the mechanism of action of xanthine oxidase. Choi EY; Stockert AL; Leimkühler S; Hille R J Inorg Biochem; 2004 May; 98(5):841-8. PubMed ID: 15134930 [TBL] [Abstract][Full Text] [Related]
2. Evidence favoring molybdenum-carbon bond formation in xanthine oxidase action: 17Q- and 13C-ENDOR and kinetic studies. Howes BD; Bray RC; Richards RL; Turner NA; Bennett B; Lowe DJ Biochemistry; 1996 Feb; 35(5):1432-43. PubMed ID: 8634273 [TBL] [Abstract][Full Text] [Related]
3. Oxidation reaction by xanthine oxidase: theoretical study of reaction mechanism. Amano T; Ochi N; Sato H; Sakaki S J Am Chem Soc; 2007 Jul; 129(26):8131-8. PubMed ID: 17564439 [TBL] [Abstract][Full Text] [Related]
4. Human xanthine oxidase changes its substrate specificity to aldehyde oxidase type upon mutation of amino acid residues in the active site: roles of active site residues in binding and activation of purine substrate. Yamaguchi Y; Matsumura T; Ichida K; Okamoto K; Nishino T J Biochem; 2007 Apr; 141(4):513-24. PubMed ID: 17301077 [TBL] [Abstract][Full Text] [Related]
5. QM/MM studies of xanthine oxidase: variations of cofactor, substrate, and active-site Glu802. Metz S; Thiel W J Phys Chem B; 2010 Jan; 114(3):1506-17. PubMed ID: 20050623 [TBL] [Abstract][Full Text] [Related]
6. A combined QM/MM study on the reductive half-reaction of xanthine oxidase: substrate orientation and mechanism. Metz S; Thiel W J Am Chem Soc; 2009 Oct; 131(41):14885-902. PubMed ID: 19788181 [TBL] [Abstract][Full Text] [Related]
7. Nature of the catalytically labile oxygen at the active site of xanthine oxidase. Doonan CJ; Stockert A; Hille R; George GN J Am Chem Soc; 2005 Mar; 127(12):4518-22. PubMed ID: 15783235 [TBL] [Abstract][Full Text] [Related]
8. The reductive half-reaction of xanthine oxidase. The involvement of prototropic equilibria in the course of the catalytic sequence. Kim JH; Ryan MG; Knaut H; Hille R J Biol Chem; 1996 Mar; 271(12):6771-80. PubMed ID: 8636099 [TBL] [Abstract][Full Text] [Related]
9. On the catalytic role of the conserved active site residue His466 of choline oxidase. Ghanem M; Gadda G Biochemistry; 2005 Jan; 44(3):893-904. PubMed ID: 15654745 [TBL] [Abstract][Full Text] [Related]
10. A catalytic triad is responsible for acid-base chemistry in the Ascaris suum NAD-malic enzyme. Karsten WE; Liu D; Rao GS; Harris BG; Cook PF Biochemistry; 2005 Mar; 44(9):3626-35. PubMed ID: 15736972 [TBL] [Abstract][Full Text] [Related]
11. The kinetic behavior of chicken liver sulfite oxidase. Brody MS; Hille R Biochemistry; 1999 May; 38(20):6668-77. PubMed ID: 10350486 [TBL] [Abstract][Full Text] [Related]
12. Catalytic mechanism of SHCHC synthase in the menaquinone biosynthesis of Escherichia coli: identification and mutational analysis of the active site residues. Jiang M; Chen X; Wu XH; Chen M; Wu YD; Guo Z Biochemistry; 2009 Jul; 48(29):6921-31. PubMed ID: 19545176 [TBL] [Abstract][Full Text] [Related]
13. Mechanism of the reaction catalyzed by isoaspartyl dipeptidase from Escherichia coli. Martí-Arbona R; Fresquet V; Thoden JB; Davis ML; Holden HM; Raushel FM Biochemistry; 2005 May; 44(19):7115-24. PubMed ID: 15882050 [TBL] [Abstract][Full Text] [Related]
14. Chromophoric spin-labeled beta-lactam antibiotics for ENDOR structural characterization of reaction intermediates of class A and class C beta-lactamases. Mustafi D; Hofer JE; Huang W; Palzkill T; Makinen MW Spectrochim Acta A Mol Biomol Spectrosc; 2004 May; 60(6):1279-89. PubMed ID: 15134725 [TBL] [Abstract][Full Text] [Related]
15. Direct electron transfer of xanthine oxidase and its catalytic reduction to nitrate. Wu Y; Hu S Anal Chim Acta; 2007 Oct; 602(2):181-6. PubMed ID: 17933602 [TBL] [Abstract][Full Text] [Related]
16. Probing the mechanism of hamster arylamine N-acetyltransferase 2 acetylation by active site modification, site-directed mutagenesis, and pre-steady state and steady state kinetic studies. Wang H; Vath GM; Gleason KJ; Hanna PE; Wagner CR Biochemistry; 2004 Jun; 43(25):8234-46. PubMed ID: 15209520 [TBL] [Abstract][Full Text] [Related]
17. 35 GHz ENDOR characterization of the "very rapid" signal of xanthine oxidase reacted with 2-hydroxy-6-methylpurine (13C8): evidence against direct Mo-C8 interaction. Manikandan P; Choi EY; Hille R; Hoffman BM J Am Chem Soc; 2001 Mar; 123(11):2658-63. PubMed ID: 11456936 [TBL] [Abstract][Full Text] [Related]
18. The reaction mechanism of xanthine oxidase: evidence for two-electron chemistry rather than sequential one-electron steps. Stockert AL; Shinde SS; Anderson RF; Hille R J Am Chem Soc; 2002 Dec; 124(49):14554-5. PubMed ID: 12465963 [TBL] [Abstract][Full Text] [Related]
19. [Reaction of fluorescein bimercuric acetate with a molybdenum center of xanthine oxidase from milk]. Kozachenko AI; Nagler LG; Lependina OL; Ianovskaia IM; Vartanian LS Biokhimiia; 1987 Dec; 52(12):1948-57. PubMed ID: 2833934 [TBL] [Abstract][Full Text] [Related]
20. Electrochemical studies of arsenite oxidase: an unusual example of a highly cooperative two-electron molybdenum center. Hoke KR; Cobb N; Armstrong FA; Hille R Biochemistry; 2004 Feb; 43(6):1667-74. PubMed ID: 14769044 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]