BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 15135060)

  • 1. Identification of an Arabidopsis inorganic pyrophosphatase capable of being imported into chloroplasts.
    Schulze S; Mant A; Kossmann J; Lloyd JR
    FEBS Lett; 2004 May; 565(1-3):101-5. PubMed ID: 15135060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Arabidopsis thaliana phosphate starvation responsive gene AtPPsPase1 encodes a novel type of inorganic pyrophosphatase.
    May A; Berger S; Hertel T; Köck M
    Biochim Biophys Acta; 2011 Feb; 1810(2):178-85. PubMed ID: 21122813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flavin nucleotide metabolism in plants: monofunctional enzymes synthesize fad in plastids.
    Sandoval FJ; Zhang Y; Roje S
    J Biol Chem; 2008 Nov; 283(45):30890-900. PubMed ID: 18713732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Folate metabolism in plants: an Arabidopsis homolog of the mammalian mitochondrial folate transporter mediates folate import into chloroplasts.
    Bedhomme M; Hoffmann M; McCarthy EA; Gambonnet B; Moran RG; Rébeillé F; Ravanel S
    J Biol Chem; 2005 Oct; 280(41):34823-31. PubMed ID: 16055441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subcellular distribution of serine acetyltransferase from Pisum sativum and characterization of an Arabidopsis thaliana putative cytosolic isoform.
    Ruffet ML; Lebrun M; Droux M; Douce R
    Eur J Biochem; 1995 Jan; 227(1-2):500-9. PubMed ID: 7851429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and characterization of the missing pyrimidine reductase in the plant riboflavin biosynthesis pathway.
    Hasnain G; Frelin O; Roje S; Ellens KW; Ali K; Guan JC; Garrett TJ; de Crécy-Lagard V; Gregory JF; McCarty DR; Hanson AD
    Plant Physiol; 2013 Jan; 161(1):48-56. PubMed ID: 23150645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel subfamily of monomeric inorganic pyrophosphatases in photosynthetic eukaryotes.
    Gómez-García MR; Losada M; Serrano A
    Biochem J; 2006 Apr; 395(1):211-21. PubMed ID: 16313235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the Family I inorganic pyrophosphatase from Pyrococcus horikoshii OT3.
    Jeon SJ; Ishikawa K
    Archaea; 2005 Dec; 1(6):385-9. PubMed ID: 16243777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel plastid-targeted J-domain protein in Arabidopsis thaliana.
    Orme W; Walker AR; Gupta R; Gray JC
    Plant Mol Biol; 2001 Jul; 46(5):615-26. PubMed ID: 11516154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overexpression of a Populus trichocarpa H+-pyrophosphatase gene PtVP1.1 confers salt tolerance on transgenic poplar.
    Yang Y; Tang RJ; Li B; Wang HH; Jin YL; Jiang CM; Bao Y; Su HY; Zhao N; Ma XJ; Yang L; Chen SL; Cheng XH; Zhang HX
    Tree Physiol; 2015 Jun; 35(6):663-77. PubMed ID: 25877769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular evidence of a unique lipoamide dehydrogenase in plastids: analysis of plastidic lipoamide dehydrogenase from Arabidopsis thaliana.
    Lutziger I; Oliver DJ
    FEBS Lett; 2000 Oct; 484(1):12-6. PubMed ID: 11056213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional cloning and characterization of a plant efflux carrier for multidrug and heavy metal detoxification.
    Li L; He Z; Pandey GK; Tsuchiya T; Luan S
    J Biol Chem; 2002 Feb; 277(7):5360-8. PubMed ID: 11739388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methionine metabolism in plants: chloroplasts are autonomous for de novo methionine synthesis and can import S-adenosylmethionine from the cytosol.
    Ravanel S; Block MA; Rippert P; Jabrin S; Curien G; Rébeillé F; Douce R
    J Biol Chem; 2004 May; 279(21):22548-57. PubMed ID: 15024005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comprehensive analysis of cytosolic Nudix hydrolases in Arabidopsis thaliana.
    Ogawa T; Ueda Y; Yoshimura K; Shigeoka S
    J Biol Chem; 2005 Jul; 280(26):25277-83. PubMed ID: 15878881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Eukaryotic peptide deformylases. Nuclear-encoded and chloroplast-targeted enzymes in Arabidopsis.
    Dirk LM; Williams MA; Houtz RL
    Plant Physiol; 2001 Sep; 127(1):97-107. PubMed ID: 11553738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brassicaceae express multiple isoforms of biotin carboxyl carrier protein in a tissue-specific manner.
    Thelen JJ; Mekhedov S; Ohlrogge JB
    Plant Physiol; 2001 Apr; 125(4):2016-28. PubMed ID: 11299381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleoside diphosphate kinase from pea chloroplasts: purification, cDNA cloning and import into chloroplasts.
    Lübeck J; Soll J
    Planta; 1995; 196(4):668-73. PubMed ID: 7580854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation of a cDNA encoding chloroplast ferrochelatase from Arabidopsis thaliana by functional complementation of a yeast mutant.
    Smith AG; Santana MA; Wallace-Cook AD; Roper JM; Labbe-Bois R
    J Biol Chem; 1994 May; 269(18):13405-13. PubMed ID: 8175771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A 125 kDa RNase E/G-like protein is present in plastids and is essential for chloroplast development and autotrophic growth in Arabidopsis.
    Mudd EA; Sullivan S; Gisby MF; Mironov A; Kwon CS; Chung WI; Day A
    J Exp Bot; 2008; 59(10):2597-610. PubMed ID: 18515828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arabidopsis KEA2, a homolog of bacterial KefC, encodes a K(+)/H(+) antiporter with a chloroplast transit peptide.
    Aranda-Sicilia MN; Cagnac O; Chanroj S; Sze H; Rodríguez-Rosales MP; Venema K
    Biochim Biophys Acta; 2012 Sep; 1818(9):2362-71. PubMed ID: 22551943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.