These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
246 related articles for article (PubMed ID: 15135580)
1. Analysis of population structure of Aspergillus flavus from peanut based on vegetative compatibility, geographic origin, mycotoxin and sclerotia production. Pildain MB; Vaamonde G; Cabral D Int J Food Microbiol; 2004 May; 93(1):31-40. PubMed ID: 15135580 [TBL] [Abstract][Full Text] [Related]
2. Genetic diversity in Aspergillus parasiticus population from the peanut agroecosystem in Argentina. Barros G; Chiotta ML; Torres A; Chulze S Lett Appl Microbiol; 2006 Jun; 42(6):560-6. PubMed ID: 16706892 [TBL] [Abstract][Full Text] [Related]
3. The phylogenetics of mycotoxin and sclerotium production in Aspergillus flavus and Aspergillus oryzae. Geiser DM; Dorner JW; Horn BW; Taylor JW Fungal Genet Biol; 2000 Dec; 31(3):169-79. PubMed ID: 11273679 [TBL] [Abstract][Full Text] [Related]
4. Association of Mycotoxin and Sclerotia Production with Compatibility Groups in Aspergillus flavus from Peanut in Argentina. Novas MV; Cabral D Plant Dis; 2002 Mar; 86(3):215-219. PubMed ID: 30818596 [TBL] [Abstract][Full Text] [Related]
5. Variability of aflatoxin and cyclopiazonic acid production by Aspergillus section flavi from different substrates in Argentina. Vaamonde G; Patriarca A; Fernández Pinto V; Comerio R; Degrossi C Int J Food Microbiol; 2003 Nov; 88(1):79-84. PubMed ID: 14527788 [TBL] [Abstract][Full Text] [Related]
6. A polyphasic approach to the identification of aflatoxigenic and non-aflatoxigenic strains of Aspergillus Section Flavi isolated from Portuguese almonds. Rodrigues P; Venâncio A; Kozakiewicz Z; Lima N Int J Food Microbiol; 2009 Feb; 129(2):187-93. PubMed ID: 19110333 [TBL] [Abstract][Full Text] [Related]
7. Aflatoxin production in six peanut (Arachis hypogaea L.) genotypes infected with Aspergillus flavus and Aspergillus parasiticus, isolated from peanut production areas of Cordoba, Argentina. Asis R; Barrionuevo DL; Giorda LM; Nores ML; Aldao MA J Agric Food Chem; 2005 Nov; 53(23):9274-80. PubMed ID: 16277433 [TBL] [Abstract][Full Text] [Related]
8. Clustered genes involved in cyclopiazonic acid production are next to the aflatoxin biosynthesis gene cluster in Aspergillus flavus. Chang PK; Horn BW; Dorner JW Fungal Genet Biol; 2009 Feb; 46(2):176-82. PubMed ID: 19038354 [TBL] [Abstract][Full Text] [Related]
9. Studies on Aspergillus section Flavi isolated from maize in northern Italy. Giorni P; Magan N; Pietri A; Bertuzzi T; Battilani P Int J Food Microbiol; 2007 Feb; 113(3):330-8. PubMed ID: 17084935 [TBL] [Abstract][Full Text] [Related]
10. A survey on distribution of Aspergillus section Flavi in corn field soils in Iran: population patterns based on aflatoxins, cyclopiazonic acid and sclerotia production. Razzaghi-Abyaneh M; Shams-Ghahfarokhi M; Allameh A; Kazeroon-Shiri A; Ranjbar-Bahadori S; Mirzahoseini H; Rezaee MB Mycopathologia; 2006 Mar; 161(3):183-92. PubMed ID: 16482391 [TBL] [Abstract][Full Text] [Related]
11. Regional differences in production of aflatoxin B1 and cyclopiazonic acid by soil isolates of aspergillus flavus along a transect within the United States. Horn BW; Dorner JW Appl Environ Microbiol; 1999 Apr; 65(4):1444-9. PubMed ID: 10103234 [TBL] [Abstract][Full Text] [Related]
12. Molecular characterization of Aspergillus section Flavi isolates collected from peanut fields in Argentina using AFLPs. Barros GG; Chiotta ML; Reynoso MM; Torres AM; Chulze SN J Appl Microbiol; 2007 Oct; 103(4):900-9. PubMed ID: 17897192 [TBL] [Abstract][Full Text] [Related]
13. Characterization and competitive ability of non-aflatoxigenic Aspergillus flavus isolated from the maize agro-ecosystem in Argentina as potential aflatoxin biocontrol agents. Alaniz Zanon MS; Clemente MP; Chulze SN Int J Food Microbiol; 2018 Jul; 277():58-63. PubMed ID: 29684766 [TBL] [Abstract][Full Text] [Related]
15. Variation in competitive ability among isolates of Aspergillus flavus from different vegetative compatibility groups during maize infection. Mehl HL; Cotty PJ Phytopathology; 2010 Feb; 100(2):150-9. PubMed ID: 20055649 [TBL] [Abstract][Full Text] [Related]
16. Non-aflatoxigenic Aspergillus flavus as potential biocontrol agents to reduce aflatoxin contamination in peanuts harvested in Northern Argentina. Alaniz Zanon MS; Barros GG; Chulze SN Int J Food Microbiol; 2016 Aug; 231():63-8. PubMed ID: 27220011 [TBL] [Abstract][Full Text] [Related]
17. Comparison of cultural and analytical methods for determination of aflatoxin production by Mississippi Delta Aspergillus isolates. Abbas HK; Zablotowicz RM; Weaver MA; Horn BW; Xie W; Shier WT Can J Microbiol; 2004 Mar; 50(3):193-9. PubMed ID: 15105886 [TBL] [Abstract][Full Text] [Related]
18. Molecular characterization of toxigenic and atoxigenic Aspergillus flavus isolates, collected from peanut fields in China. Yin Y; Lou T; Yan L; Michailides TJ; Ma Z J Appl Microbiol; 2009 Dec; 107(6):1857-65. PubMed ID: 19457031 [TBL] [Abstract][Full Text] [Related]
19. Production of cyclopiazonic acid, aflatrem, and aflatoxin by Aspergillus flavus is regulated by veA, a gene necessary for sclerotial formation. Duran RM; Cary JW; Calvo AM Appl Microbiol Biotechnol; 2007 Jan; 73(5):1158-68. PubMed ID: 16988822 [TBL] [Abstract][Full Text] [Related]