BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 15135584)

  • 1. Modelling effect of physical and chemical parameters on heat inactivation kinetics of hepatitis A virus in a fruit model system.
    Deboosere N; Legeay O; Caudrelier Y; Lange M
    Int J Food Microbiol; 2004 May; 93(1):73-85. PubMed ID: 15135584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A predictive microbiology approach for thermal inactivation of Hepatitis A virus in acidified berries.
    Deboosere N; Pinon A; Delobel A; Temmam S; Morin T; Merle G; Blaise-Boisseau S; Perelle S; Vialette M
    Food Microbiol; 2010 Oct; 27(7):962-7. PubMed ID: 20688239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling the combined effects of pH, temperature and ascorbic acid concentration on the heat resistance of Alicyclobacillus acidoterrestis.
    Bahçeci KS; Acar J
    Int J Food Microbiol; 2007 Dec; 120(3):266-73. PubMed ID: 17936391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of pH, salt, and temperature on pressure inactivation of hepatitis A virus.
    Kingsley DH; Chen H
    Int J Food Microbiol; 2009 Mar; 130(1):61-4. PubMed ID: 19187994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined physico-chemical and water transfer modelling to predict bacterial growth during food processes.
    Lebert I; Dussap CG; Lebert A
    Int J Food Microbiol; 2005 Jul; 102(3):305-22. PubMed ID: 16014298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A predictive model for the influence of food components on survival of Listeria monocytogenes LM 54004 under high hydrostatic pressure and mild heat conditions.
    Gao YL; Ju XR; Wu-Ding
    Int J Food Microbiol; 2007 Jul; 117(3):287-94. PubMed ID: 17537535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling the effect of the redox potential and pH of heating media on Listeria monocytogenes heat resistance.
    Ignatova M; Leguerinel I; Guilbot M; Prévost H; Guillou S
    J Appl Microbiol; 2008 Sep; 105(3):875-83. PubMed ID: 18410341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of survival analysis and Classification and Regression Trees to model the growth/no growth boundary of spoilage yeasts as affected by alcohol, pH, sucrose, sorbate and temperature.
    Evans DG; Everis LK; Betts GD
    Int J Food Microbiol; 2004 Apr; 92(1):55-67. PubMed ID: 15033268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined effects of heat, nisin and acidification on the inactivation of Clostridium sporogenes spores in carrot-alginate particles: from kinetics to process validation.
    Naim F; Zareifard MR; Zhu S; Huizing RH; Grabowski S; Marcotte M
    Food Microbiol; 2008 Oct; 25(7):936-41. PubMed ID: 18721685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth, inactivation and histamine formation of Morganella psychrotolerans and Morganella morganii - development and evaluation of predictive models.
    Emborg J; Dalgaard P
    Int J Food Microbiol; 2008 Dec; 128(2):234-43. PubMed ID: 18845350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A systematic approach to determine global thermal inactivation parameters for various food pathogens.
    van Asselt ED; Zwietering MH
    Int J Food Microbiol; 2006 Mar; 107(1):73-82. PubMed ID: 16274824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of pH, water activity and gel micro-structure, including oxygen profiles and rheological characterization, on the growth kinetics of Salmonella Typhimurium.
    Theys TE; Geeraerd AH; Verhulst A; Poot K; Van Bree I; Devlieghere F; Moldenaers P; Wilson D; Brocklehurst T; Van Impe JF
    Int J Food Microbiol; 2008 Nov; 128(1):67-77. PubMed ID: 18834641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling thermal inactivation of Listeria monocytogenes in sucrose solutions of various water activities.
    Fernández A; López M; Bernardo A; Condón S; Raso J
    Food Microbiol; 2007 Jun; 24(4):372-9. PubMed ID: 17189763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of artificial neural networks to describe the combined effect of pH and NaCl on the heat resistance of Bacillus stearothermophilus.
    Esnoz A; Periago PM; Conesa R; Palop A
    Int J Food Microbiol; 2006 Feb; 106(2):153-8. PubMed ID: 16216369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of predictive modelling approaches for surface temperature and associated microbiological inactivation during hot dry air decontamination.
    Valdramidis VP; Belaubre N; Zuniga R; Foster AM; Havet M; Geeraerd AH; Swain MJ; Bernaerts K; Van Impe JF; Kondjoyan A
    Int J Food Microbiol; 2005 Apr; 100(1-3):261-74. PubMed ID: 15854711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A quasi-chemical model for the growth and death of microorganisms in foods by non-thermal and high-pressure processing.
    Doona CJ; Feeherry FE; Ross EW
    Int J Food Microbiol; 2005 Apr; 100(1-3):21-32. PubMed ID: 15854689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modelling the influence of the sporulation temperature upon the bacterial spore heat resistance, application to heating process calculation.
    Leguérinel I; Couvert O; Mafart P
    Int J Food Microbiol; 2007 Feb; 114(1):100-4. PubMed ID: 17184868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimal experiment design for cardinal values estimation: guidelines for data collection.
    Bernaerts K; Gysemans KP; Nhan Minh T; Van Impe JF
    Int J Food Microbiol; 2005 Apr; 100(1-3):153-65. PubMed ID: 15854701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modifications in membrane fatty acid composition of Salmonella typhimurium in response to growth conditions and their effect on heat resistance.
    Alvarez-Ordóñez A; Fernández A; López M; Arenas R; Bernardo A
    Int J Food Microbiol; 2008 Apr; 123(3):212-9. PubMed ID: 18313782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.