BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 15135940)

  • 61. Corticospinal excitability is lower during rhythmic arm movement than during tonic contraction.
    Carroll TJ; Baldwin ER; Collins DF; Zehr EP
    J Neurophysiol; 2006 Feb; 95(2):914-21. PubMed ID: 16251263
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Dynamic modulation of corticospinal excitability and short-latency afferent inhibition during onset and maintenance phase of selective finger movement.
    Cho HJ; Panyakaew P; Thirugnanasambandam N; Wu T; Hallett M
    Clin Neurophysiol; 2016 Jun; 127(6):2343-9. PubMed ID: 27178851
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Movement-specific enhancement of corticospinal excitability at subthreshold levels during motor imagery.
    Li S
    Exp Brain Res; 2007 May; 179(3):517-24. PubMed ID: 17160400
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Paradoxical effect of digital anaesthesia on force and corticospinal excitability.
    Duque J; Vandermeeren Y; Lejeune TM; Thonnard JL; Smith AM; Olivier E
    Neuroreport; 2005 Feb; 16(3):259-62. PubMed ID: 15706231
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Somatotopy and temporal dynamics of sensorimotor interactions: evidence from double afferent inhibition.
    Tamè L; Pavani F; Braun C; Salemme R; Farnè A; Reilly KT
    Eur J Neurosci; 2015 May; 41(11):1459-65. PubMed ID: 25879687
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Interaction between the premotor processes of eye and hand movements: possible mechanism underlying eye-hand coordination.
    Hiraoka K; Kurata N; Sakaguchi M; Nonaka K; Matsumoto N
    Somatosens Mot Res; 2014 Mar; 31(1):49-55. PubMed ID: 24131227
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Cerebellar neural responses related to actively and passively applied noxious thermal stimulation in human subjects: a parametric fMRI study.
    Helmchen C; Mohr C; Erdmann C; Binkofski F
    Neurosci Lett; 2004 May; 361(1-3):237-40. PubMed ID: 15135937
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Finger interactions studied with transcranial magnetic stimulation during multi-finger force production tasks.
    Danion F; Latash ML; Li S
    Clin Neurophysiol; 2003 Aug; 114(8):1445-55. PubMed ID: 12888027
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Time-varying enhancement of human cortical excitability mediated by cutaneous inputs during precision grip.
    Johansson RS; Lemon RN; Westling G
    J Physiol; 1994 Dec; 481 ( Pt 3)(Pt 3):761-75. PubMed ID: 7707242
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Practice-related reduction of electromyographic mirroring activity depends on basal levels of interhemispheric inhibition.
    Bologna M; Caronni A; Berardelli A; Rothwell JC
    Eur J Neurosci; 2012 Dec; 36(12):3749-57. PubMed ID: 23033874
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Corticospinal excitability accompanying ballistic wrist movements in primary dystonia.
    MacKinnon CD; Velickovic M; Drafta C; Hesquijarosa A; Brin MF
    Mov Disord; 2004 Mar; 19(3):273-84. PubMed ID: 15022181
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Characterization of corticospinal activation of finger motor neurons during precision and power grip in humans.
    Svane C; Forman CR; Nielsen JB; Geertsen SS
    Exp Brain Res; 2018 Mar; 236(3):745-753. PubMed ID: 29322201
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Cutaneous facilitation of large motor units and motor control of human fingers in precision grip.
    Kanda K; Desmedt JE
    Adv Neurol; 1983; 39():253-61. PubMed ID: 6660097
    [No Abstract]   [Full Text] [Related]  

  • 74. Effects of different modalities of afferent stimuli of the lumbo-sacral area on control of lumbar paravertebral muscles.
    Massé-Alarie H; Shraim MA; Taylor JL; Hodges PW
    Eur J Neurosci; 2022 Jul; 56(1):3687-3704. PubMed ID: 35478204
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Modulation of Corticospinal Excitability Depends on the Pattern of Mechanical Tactile Stimulation.
    Kojima S; Onishi H; Miyaguchi S; Kotan S; Sasaki R; Nakagawa M; Kirimoto H; Tamaki H
    Neural Plast; 2018; 2018():5383514. PubMed ID: 29849557
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Increasing corticospinal excitability in the antagonist muscle during muscle relaxation with a tracking task.
    Yoshida N; Yamaguchi T; Saitou K; Tanabe S; Sugawara K
    Somatosens Mot Res; 2015; 32(1):39-43. PubMed ID: 25994016
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Evoked pain in the motor endplate region of the brachial biceps muscle: an experimental study.
    Qerama E; Fuglsang-Frederiksen A; Kasch H; Bach FW; Jensen TS
    Muscle Nerve; 2004 Mar; 29(3):393-400. PubMed ID: 14981739
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Modulation of upper extremity motoneurone excitability following noxious finger tip stimulation in man: a study with transcranial magnetic stimulation.
    Kofler M; Glocker FX; Leis AA; Seifert C; Wissel J; Kronenberg MF; Fuhr P
    Neurosci Lett; 1998 Apr; 246(2):97-100. PubMed ID: 9627189
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Agent-dependent modulation of corticospinal excitability during painful transcutaneous electrical stimulation.
    Fossataro C; Burin D; Ronga I; Galigani M; Rossi Sebastiano A; Pia L; Garbarini F
    Neuroimage; 2020 Aug; 217():116897. PubMed ID: 32417451
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Does the motor cortex influence denervation in ALS? EMG studies of muscles with both contralateral and bilateral corticospinal innervation.
    de Carvalho M; Pinto S; Swash M
    Clin Neurophysiol; 2011 Mar; 122(3):629-635. PubMed ID: 20822953
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.