These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 15135940)

  • 81. Human corticospinal excitability in microgravity and hypergravity during parabolic flight.
    Davey NJ; Rawlinson SR; Nowicky AV; McGregor AH; Dubois K; Strutton PH; Schroter RC
    Aviat Space Environ Med; 2004 Apr; 75(4):359-63. PubMed ID: 15086127
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Motor-unit synchrony within and across compartments of the human flexor digitorum superficialis.
    McIsaac TL; Fuglevand AJ
    J Neurophysiol; 2007 Jan; 97(1):550-6. PubMed ID: 17093112
    [TBL] [Abstract][Full Text] [Related]  

  • 83. From simulation to reciprocity: the case of complementary actions.
    Sartori L; Cavallo A; Bucchioni G; Castiello U
    Soc Neurosci; 2012; 7(2):146-58. PubMed ID: 21777110
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Corticospinal excitability is reduced in a simple reaction time task requiring complex timing.
    Kennefick M; Maslovat D; Chua R; Carlsen AN
    Brain Res; 2016 Jul; 1642():319-326. PubMed ID: 27064075
    [TBL] [Abstract][Full Text] [Related]  

  • 85. The effect of electrical stimulation on corticospinal excitability is dependent on application duration: a same subject pre-post test design.
    Andrews RK; Schabrun SM; Ridding MC; Galea MP; Hodges PW; Chipchase LS
    J Neuroeng Rehabil; 2013 Jun; 10():51. PubMed ID: 23758902
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Corticospinal volleys underlying the EMG responses to transcranial stimulation of the human motor cortex.
    Burke D; Hicks R
    Electroencephalogr Clin Neurophysiol Suppl; 1999; 49():226-32. PubMed ID: 10533115
    [No Abstract]   [Full Text] [Related]  

  • 87. Corticospinal influences on the distal muscles of the hand in conditions of inertial loading.
    Kazennikov OV
    Neurosci Behav Physiol; 2010 Jul; 40(6):645-51. PubMed ID: 20544393
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Acquisition of skilled finger movements is accompanied by reorganization of the corticospinal system.
    Hirano M; Kubota S; Furuya S; Koizume Y; Tanaka S; Funase K
    J Neurophysiol; 2018 Feb; 119(2):573-584. PubMed ID: 29142098
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Evidence of activity-dependent withdrawal of corticospinal projections during human development.
    Eyre JA; Taylor JP; Villagra F; Smith M; Miller S
    Neurology; 2001 Nov; 57(9):1543-54. PubMed ID: 11706088
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Generic inhibition of the selected movement and constrained inhibition of nonselected movements during response preparation.
    Labruna L; Lebon F; Duque J; Klein PA; Cazares C; Ivry RB
    J Cogn Neurosci; 2014 Feb; 26(2):269-78. PubMed ID: 24047388
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Motor cortex excitability during ballistic forearm and finger movements.
    Mills KR; Kimiskidis V
    Muscle Nerve; 1996 Apr; 19(4):468-73. PubMed ID: 8622726
    [TBL] [Abstract][Full Text] [Related]  

  • 92. A central back-coupling hypothesis on the organization of motor synergies: a physical metaphor and a neural model.
    Latash ML; Shim JK; Smilga AV; Zatsiorsky VM
    Biol Cybern; 2005 Mar; 92(3):186-91. PubMed ID: 15739110
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Exercise and pain: the neurobiology, measurement, and laboratory study of pain in relation to exercise in humans.
    O'Connor PJ; Cook DB
    Exerc Sport Sci Rev; 1999; 27():119-66. PubMed ID: 10791016
    [No Abstract]   [Full Text] [Related]  

  • 94. Direct corticospinal control of force derivative.
    Soto O; Cros D
    J Neurosci; 2011 Feb; 31(6):1944-8. PubMed ID: 21307232
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Transcranial magnetic stimulation: specific and non-specific facilitation of magnetic motor evoked potentials.
    Hufnagel A; Jaeger M; Elger CE
    J Neurol; 1990 Nov; 237(7):416-9. PubMed ID: 2273410
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Efficient and reliable characterization of the corticospinal system using transcranial magnetic stimulation.
    Kukke SN; Paine RW; Chao CC; de Campos AC; Hallett M
    J Clin Neurophysiol; 2014 Jun; 31(3):246-52. PubMed ID: 24887609
    [TBL] [Abstract][Full Text] [Related]  

  • 97. In anticipation of pain: expectancy modulates corticospinal excitability, autonomic response, and pain perception.
    Barnes K; McNair NA; Harris JA; Sharpe L; Colagiuri B
    Pain; 2021 Aug; 162(8):2287-2296. PubMed ID: 34256382
    [TBL] [Abstract][Full Text] [Related]  

  • 98. The influence of intrapersonal sensorimotor experiences on the corticospinal responses during action-observation.
    Roberts JW; Constable MD; Burgess R; Lyons JL; Welsh TN
    Soc Neurosci; 2018 Apr; 13(2):246-256. PubMed ID: 28632000
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Enhanced corticospinal response to observed pain in pain synesthetes.
    Fitzgibbon BM; Enticott PG; Bradshaw JL; Giummarra MJ; Chou M; Georgiou-Karistianis N; Fitzgerald PB
    Cogn Affect Behav Neurosci; 2012 Jun; 12(2):406-18. PubMed ID: 22201037
    [TBL] [Abstract][Full Text] [Related]  

  • 100. A neurophysiological study of mirror movements in adults and children.
    Mayston MJ; Harrison LM; Stephens JA
    Ann Neurol; 1999 May; 45(5):583-94. PubMed ID: 10319880
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.