These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 15136048)

  • 1. Snorkeling preferences foster an amino acid composition bias in transmembrane helices.
    Chamberlain AK; Lee Y; Kim S; Bowie JU
    J Mol Biol; 2004 May; 339(2):471-9. PubMed ID: 15136048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The occurrence of C--H...O hydrogen bonds in alpha-helices and helix termini in globular proteins.
    Manikandan K; Ramakumar S
    Proteins; 2004 Sep; 56(4):768-81. PubMed ID: 15281129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Periodicity in alpha-helix lengths and C-capping preferences.
    Penel S; Morrison RG; Mortishire-Smith RJ; Doig AJ
    J Mol Biol; 1999 Nov; 293(5):1211-9. PubMed ID: 10547296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Positively and negatively charged residues have different effects on the position in the membrane of a model transmembrane helix.
    Monné M; Nilsson I; Johansson M; Elmhed N; von Heijne G
    J Mol Biol; 1998 Dec; 284(4):1177-83. PubMed ID: 9837735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hetero-assembly between all-L- and all-D-amino acid transmembrane domains: forces involved and implication for inactivation of membrane proteins.
    Sal-Man N; Gerber D; Shai Y
    J Mol Biol; 2004 Nov; 344(3):855-64. PubMed ID: 15533450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of helix ends. Amino acid preferences, hydrogen bonding and electrostatic interactions.
    Dasgupta S; Bell JA
    Int J Pept Protein Res; 1993 May; 41(5):499-511. PubMed ID: 8320043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. E(z), a depth-dependent potential for assessing the energies of insertion of amino acid side-chains into membranes: derivation and applications to determining the orientation of transmembrane and interfacial helices.
    Senes A; Chadi DC; Law PB; Walters RF; Nanda V; Degrado WF
    J Mol Biol; 2007 Feb; 366(2):436-48. PubMed ID: 17174324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The world of beta- and gamma-peptides comprised of homologated proteinogenic amino acids and other components.
    Seebach D; Beck AK; Bierbaum DJ
    Chem Biodivers; 2004 Aug; 1(8):1111-239. PubMed ID: 17191902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specificity of helix packing in transmembrane dimer of the cell death factor BNIP3: a molecular modeling study.
    Vereshaga YA; Volynsky PE; Pustovalova JE; Nolde DE; Arseniev AS; Efremov RG
    Proteins; 2007 Nov; 69(2):309-25. PubMed ID: 17600828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-native interhelical hydrogen bonds in the cystic fibrosis transmembrane conductance regulator domain modulated by polar mutations.
    Choi MY; Cardarelli L; Therien AG; Deber CM
    Biochemistry; 2004 Jun; 43(25):8077-83. PubMed ID: 15209503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The energetics of off-rotamer protein side-chain conformations.
    Petrella RJ; Karplus M
    J Mol Biol; 2001 Oct; 312(5):1161-75. PubMed ID: 11580256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structures of N-termini of helices in proteins.
    Doig AJ; MacArthur MW; Stapley BJ; Thornton JM
    Protein Sci; 1997 Jan; 6(1):147-55. PubMed ID: 9007987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of side-chain rotamers in transmembrane proteins.
    Chamberlain AK; Bowie JU
    Biophys J; 2004 Nov; 87(5):3460-9. PubMed ID: 15339811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amino-acid solvation structure in transmembrane helices from molecular dynamics simulations.
    Johansson AC; Lindahl E
    Biophys J; 2006 Dec; 91(12):4450-63. PubMed ID: 17012325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A fluorescence method to define transmembrane alpha-helices in membrane proteins: studies with bacterial diacylglycerol kinase.
    Jittikoon J; East JM; Lee AG
    Biochemistry; 2007 Sep; 46(38):10950-9. PubMed ID: 17722884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Position of helical kinks in membrane protein crystal structures and the accuracy of computational prediction.
    Hall SE; Roberts K; Vaidehi N
    J Mol Graph Model; 2009; 27(8):944-50. PubMed ID: 19285892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assigning transmembrane segments to helices in intermediate-resolution structures.
    Enosh A; Fleishman SJ; Ben-Tal N; Halperin D
    Bioinformatics; 2004 Aug; 20 Suppl 1():i122-9. PubMed ID: 15262790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proline substitutions are not easily accommodated in a membrane protein.
    Yohannan S; Yang D; Faham S; Boulting G; Whitelegge J; Bowie JU
    J Mol Biol; 2004 Jul; 341(1):1-6. PubMed ID: 15312757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of nucleotide bias upon the composition and prediction of transmembrane helices.
    Stevens TJ; Arkin IT
    Protein Sci; 2000 Mar; 9(3):505-11. PubMed ID: 10752612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of the topology of the hydrophobic segment of mammalian diacylglycerol kinase epsilon in a cell membrane and its relationship to predictions from modeling.
    Decaffmeyer M; Shulga YV; Dicu AO; Thomas A; Truant R; Topham MK; Brasseur R; Epand RM
    J Mol Biol; 2008 Nov; 383(4):797-809. PubMed ID: 18801368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.