BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 15136157)

  • 21. Probing the nitrite and nitric oxide reductase activity of cbb3 oxidase: resonance Raman detection of a six-coordinate ferrous heme-nitrosyl species in the binuclear b3/CuB center.
    Loullis A; Pinakoulaki E
    Chem Commun (Camb); 2015 Dec; 51(98):17398-401. PubMed ID: 26465875
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The EPR spectrum for CuB in cytochrome c oxidase.
    Pezeshk A; Torres J; Wilson MT; Symons MC
    J Inorg Biochem; 2001 Jan; 83(2-3):115-9. PubMed ID: 11237250
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Redox-dependent structural changes in an engineered heme-copper center in myoglobin: insights into chloride binding to CuB in heme copper oxidases.
    Zhao X; Nilges MJ; Lu Y
    Biochemistry; 2005 May; 44(17):6559-64. PubMed ID: 15850389
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A low-redox potential heme in the dinuclear center of bacterial nitric oxide reductase: implications for the evolution of energy-conserving heme-copper oxidases.
    Grönberg KL; Roldán MD; Prior L; Butland G; Cheesman MR; Richardson DJ; Spiro S; Thomson AJ; Watmough NJ
    Biochemistry; 1999 Oct; 38(42):13780-6. PubMed ID: 10529222
    [TBL] [Abstract][Full Text] [Related]  

  • 25. FTIR detection of protonation/deprotonation of key carboxyl side chains caused by redox change of the Cu(A)-heme a moiety and ligand dissociation from the heme a3-Cu(B) center of bovine heart cytochrome c oxidase.
    Okuno D; Iwase T; Shinzawa-Itoh K; Yoshikawa S; Kitagawa T
    J Am Chem Soc; 2003 Jun; 125(24):7209-18. PubMed ID: 12797794
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Purification and initial kinetic and spectroscopic characterization of NO reductase from Paracoccus denitrificans.
    Girsch P; de Vries S
    Biochim Biophys Acta; 1997 Jan; 1318(1-2):202-16. PubMed ID: 9030265
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Isolation and characterization of nitric oxide reductase from Paracoccus halodenitrificans.
    Sakurai N; Sakurai T
    Biochemistry; 1997 Nov; 36(45):13809-15. PubMed ID: 9374857
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nitric-oxide reductase. Structure and properties of the catalytic site from resonance Raman scattering.
    Pinakoulaki E; Gemeinhardt S; Saraste M; Varotsis C
    J Biol Chem; 2002 Jun; 277(26):23407-13. PubMed ID: 11971903
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The active site of the bacterial nitric oxide reductase is a dinuclear iron center.
    Hendriks J; Warne A; Gohlke U; Haltia T; Ludovici C; Lübben M; Saraste M
    Biochemistry; 1998 Sep; 37(38):13102-9. PubMed ID: 9748316
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spectroscopic characterization of mononitrosyl complexes in heme--nonheme diiron centers within the myoglobin scaffold (Fe(B)Mbs): relevance to denitrifying NO reductase.
    Hayashi T; Miner KD; Yeung N; Lin YW; Lu Y; Moënne-Loccoz P
    Biochemistry; 2011 Jul; 50(26):5939-47. PubMed ID: 21634416
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure and coordination of CuB in the Acidianus ambivalens aa3 quinol oxidase heme-copper center.
    Bandeiras TM; Pereira MM; Teixeira M; Moenne-Loccoz P; Blackburn NJ
    J Biol Inorg Chem; 2005 Oct; 10(6):625-35. PubMed ID: 16163550
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Properties of a soluble domain of subunit C of a bacterial nitric oxide reductase.
    Oubrie A; Gemeinhardt S; Field S; Marritt S; Thomson AJ; Saraste M; Richardson DJ
    Biochemistry; 2002 Sep; 41(35):10858-65. PubMed ID: 12196025
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Low-spin heme b(3) in the catalytic center of nitric oxide reductase from Pseudomonas nautica.
    Timóteo CG; Pereira AS; Martins CE; Naik SG; Duarte AG; Moura JJ; Tavares P; Huynh BH; Moura I
    Biochemistry; 2011 May; 50(20):4251-62. PubMed ID: 21452843
    [TBL] [Abstract][Full Text] [Related]  

  • 34. pH-dependent structural changes at the Heme-Copper binuclear center of cytochrome c oxidase.
    Das TK; Tomson FL; Gennis RB; Gordon M; Rousseau DL
    Biophys J; 2001 May; 80(5):2039-45. PubMed ID: 11325707
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of the copper-sulfur chromophores in nitrous oxide reductase by resonance raman spectroscopy: evidence for sulfur coordination in the catalytic cluster.
    Alvarez ML; Ai J; Zumft W; Sanders-Loehr J; Dooley DM
    J Am Chem Soc; 2001 Jan; 123(4):576-87. PubMed ID: 11456570
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evidence for the presence of two conformations of the heme a3-Cu(B) pocket of cytochrome caa3 from Thermus thermophilus.
    Pavlou A; Soulimane T; Pinakoulaki E
    J Phys Chem B; 2011 Oct; 115(39):11455-61. PubMed ID: 21853973
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cytochrome cb-type nitric oxide reductase with cytochrome c oxidase activity from Paracoccus denitrificans ATCC 35512.
    Fujiwara T; Fukumori Y
    J Bacteriol; 1996 Apr; 178(7):1866-71. PubMed ID: 8606159
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Resonance Raman detection of the Fe2+-C-N modes in heme-copper oxidases: a probe of the active site.
    Pinakoulaki E; Vamvouka M; Varotsis C
    Inorg Chem; 2004 Aug; 43(16):4907-10. PubMed ID: 15285666
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Resonance Raman investigation of the effects of copper binding to iron-mesoporphyrin.histidine-rich glycoprotein complexes.
    Larsen RW; Nunez DJ; Morgan WT; Muhoberac BB; Ondrias MR
    Biophys J; 1992 Apr; 61(4):1007-17. PubMed ID: 1581496
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reaction of carbon monoxide with the reduced active site of bacterial nitric oxide reductase.
    Hendriks JH; Prior L; Baker AR; Thomson AJ; Saraste M; Watmough NJ
    Biochemistry; 2001 Nov; 40(44):13361-9. PubMed ID: 11683646
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.