These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 15136251)

  • 1. Perturbations of human posture: influence of impulse modality on EMG responses and cerebral evoked potentials.
    Dietz V; Horstmann GA; Berger W
    J Mot Behav; 1989 Dec; 21(4):357-72. PubMed ID: 15136251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interlimb coordination of leg-muscle activation during perturbation of stance in humans.
    Dietz V; Horstmann GA; Berger W
    J Neurophysiol; 1989 Sep; 62(3):680-93. PubMed ID: 2769353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interlimb coordination of stance in children: divergent modulation of spinal reflex responses and cerebral evoked potentials in terms of age.
    Berger W; Horstmann GA; Dietz V
    Neurosci Lett; 1990 Aug; 116(1-2):118-22. PubMed ID: 2259442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cerebral potentials and leg muscle e.m.g. responses associated with stance perturbation.
    Dietz V; Quintern J; Berger W; Schenck E
    Exp Brain Res; 1985; 57(2):348-54. PubMed ID: 3972035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Free and supported stance in Parkinson's disease. The effect of posture and 'postural set' on leg muscle responses to perturbation, and its relation to the severity of the disease.
    Schieppati M; Nardone A
    Brain; 1991 Jun; 114 ( Pt 3)():1227-44. PubMed ID: 2065247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human stance on a sinusoidally translating platform: balance control by feedforward and feedback mechanisms.
    Dietz V; Trippel M; Ibrahim IK; Berger W
    Exp Brain Res; 1993; 93(2):352-62. PubMed ID: 8491275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cerebral evoked potentials associated with the compensatory reactions following stance and gait perturbation.
    Dietz V; Quintern J; Berger W
    Neurosci Lett; 1984 Sep; 50(1-3):181-6. PubMed ID: 6493623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compensation of human stance perturbations: selection of the appropriate electromyographic pattern.
    Dietz V; Trippel M; Discher M; Horstmann GA
    Neurosci Lett; 1991 May; 126(1):71-4. PubMed ID: 1866087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic postural responses in the cat: responses of distal hindlimb muscles to paired vertical perturbations of stance.
    Rushmer DS; Dunbar DC; Russell CJ; Windus SL
    Exp Brain Res; 1987; 68(3):477-90. PubMed ID: 3691720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Corrective reactions to stumbling in man: neuronal co-ordination of bilateral leg muscle activity during gait.
    Berger W; Dietz V; Quintern J
    J Physiol; 1984 Dec; 357():109-25. PubMed ID: 6512687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of dopamine on postural control in parkinsonian subjects: scaling, set, and tone.
    Horak FB; Frank J; Nutt J
    J Neurophysiol; 1996 Jun; 75(6):2380-96. PubMed ID: 8793751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Afferent and efferent control of stance and gait: developmental changes in children.
    Berger W; Quintern J; Dietz V
    Electroencephalogr Clin Neurophysiol; 1987 Mar; 66(3):244-52. PubMed ID: 2434308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single joint perturbation during gait: preserved compensatory response pattern in spinal cord injured subjects.
    Field-Fote EC; Dietz V
    Clin Neurophysiol; 2007 Jul; 118(7):1607-16. PubMed ID: 17475549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Involvement of different receptors in the regulation of human posture.
    Dietz V; Horstmann G; Berger W
    Neurosci Lett; 1988 Nov; 94(1-2):82-7. PubMed ID: 3241675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. State-dependent corrective reactions for backward balance losses during human walking.
    Kagawa T; Ohta Y; Uno Y
    Hum Mov Sci; 2011 Dec; 30(6):1210-24. PubMed ID: 21704417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of instruction, prediction, and afferent sensory information on the postural organization of step initiation.
    Burleigh A; Horak F
    J Neurophysiol; 1996 Apr; 75(4):1619-28. PubMed ID: 8727400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast head tilt has only a minor effect on quick compensatory reactions during the regulation of stance and gait.
    Dietz V; Horstmann GA; Berger W
    Exp Brain Res; 1988; 73(3):470-6. PubMed ID: 3224655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Age-dependent variations in the directional sensitivity of balance corrections and compensatory arm movements in man.
    Allum JH; Carpenter MG; Honegger F; Adkin AL; Bloem BR
    J Physiol; 2002 Jul; 542(Pt 2):643-63. PubMed ID: 12122159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of central set on human postural responses.
    Horak FB; Diener HC; Nashner LM
    J Neurophysiol; 1989 Oct; 62(4):841-53. PubMed ID: 2809706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Is lower leg proprioception essential for triggering human automatic postural responses?
    Bloem BR; Allum JH; Carpenter MG; Honegger F
    Exp Brain Res; 2000 Feb; 130(3):375-91. PubMed ID: 10706436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.