BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 15136599)

  • 1. Frequency-dependent processing in the vibrissa sensory system.
    Moore CI
    J Neurophysiol; 2004 Jun; 91(6):2390-9. PubMed ID: 15136599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Band-pass response properties of rat SI neurons.
    Garabedian CE; Jones SR; Merzenich MM; Dale A; Moore CI
    J Neurophysiol; 2003 Sep; 90(3):1379-91. PubMed ID: 12750410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical resonance enhances the sensitivity of the vibrissa sensory system to near-threshold stimuli.
    Andermann ML; Moore CI
    Brain Res; 2008 Oct; 1235():74-81. PubMed ID: 18625209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coherent electrical activity between vibrissa sensory areas of cerebellum and neocortex is enhanced during free whisking.
    O'Connor SM; Berg RW; Kleinfeld D
    J Neurophysiol; 2002 Apr; 87(4):2137-48. PubMed ID: 11929931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frequency adaptation modulates spatial integration of sensory responses in the rat whisker system.
    Higley MJ; Contreras D
    J Neurophysiol; 2007 May; 97(5):3819-24. PubMed ID: 17376853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relation between activities of the cortex and vibrissae muscles during high-voltage rhythmic spike discharges in rats.
    Shaw FZ; Liao YF
    J Neurophysiol; 2005 May; 93(5):2435-48. PubMed ID: 15625092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early frequency-dependent information processing and cortical control in the whisker pathway of the rat: electrophysiological study of brainstem nuclei principalis and interpolaris.
    Sanchez-Jimenez A; Panetsos F; Murciano A
    Neuroscience; 2009 Apr; 160(1):212-26. PubMed ID: 19409209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vibrissa movement elicited by rhythmic electrical microstimulation to motor cortex in the aroused rat mimics exploratory whisking.
    Berg RW; Kleinfeld D
    J Neurophysiol; 2003 Nov; 90(5):2950-63. PubMed ID: 12904336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural correlates of vibrissa resonance; band-pass and somatotopic representation of high-frequency stimuli.
    Andermann ML; Ritt J; Neimark MA; Moore CI
    Neuron; 2004 May; 42(3):451-63. PubMed ID: 15134641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Processing of periodic whisker deflections by neurons in the ventroposterior medial and thalamic reticular nuclei.
    Hartings JA; Temereanca S; Simons DJ
    J Neurophysiol; 2003 Nov; 90(5):3087-94. PubMed ID: 14615426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Current flow in vibrissa motor cortex can phase-lock with exploratory rhythmic whisking in rat.
    Ahrens KF; Kleinfeld D
    J Neurophysiol; 2004 Sep; 92(3):1700-7. PubMed ID: 15331651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptation in thalamic barreloid and cortical barrel neurons to periodic whisker deflections varying in frequency and velocity.
    Khatri V; Hartings JA; Simons DJ
    J Neurophysiol; 2004 Dec; 92(6):3244-54. PubMed ID: 15306632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatiotemporal characteristics of neuronal sensory integration in the barrel cortex of the rat.
    Ego-Stengel V; Mello e Souza T; Jacob V; Shulz DE
    J Neurophysiol; 2005 Mar; 93(3):1450-67. PubMed ID: 15496491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Responses of trigeminal ganglion neurons during natural whisking behaviors in the awake rat.
    Leiser SC; Moxon KA
    Neuron; 2007 Jan; 53(1):117-33. PubMed ID: 17196535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of systemically administered cocaine on sensory responses to peri-threshold vibrissae stimulation: individual cells, ensemble activity, and animal behaviour.
    Rutter JJ; Devilbiss DM; Waterhouse BD
    Eur J Neurosci; 2005 Dec; 22(12):3205-16. PubMed ID: 16367787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coding of stimulus frequency by latency in thalamic networks through the interplay of GABAB-mediated feedback and stimulus shape.
    Golomb D; Ahissar E; Kleinfeld D
    J Neurophysiol; 2006 Mar; 95(3):1735-50. PubMed ID: 16267113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temporal patterns of field potentials in vibrissa/barrel cortex reveal stimulus orientation and shape.
    Benison AM; Ard TD; Crosby AM; Barth DS
    J Neurophysiol; 2006 Apr; 95(4):2242-51. PubMed ID: 16394071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic translation of surface coarseness into whisker vibrations.
    Lottem E; Azouz R
    J Neurophysiol; 2008 Nov; 100(5):2852-65. PubMed ID: 18799602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel stimulus system for applying tactile stimuli to the macrovibrissae in electrophysiological experiments.
    Rajan R; Bourke J; Cassell J
    J Neurosci Methods; 2006 Oct; 157(1):103-17. PubMed ID: 16698087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of neuronal processing in rat somatosensory cortex.
    Moore CI; Nelson SB; Sur M
    Trends Neurosci; 1999 Nov; 22(11):513-20. PubMed ID: 10529819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.