These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 15136799)
1. On the rational design of substrate mimetics: The function of docking approaches for the prediction of protease specificities. Günther R; Elsner C; Schmidt S; Hofmann HJ; Bordusa F Org Biomol Chem; 2004 May; 2(10):1442-6. PubMed ID: 15136799 [TBL] [Abstract][Full Text] [Related]
2. Protease-catalyzed hydrolysis of substrate mimetics (inverse substrates): A new approach reveals a new mechanism. Thormann M; Thust S; Hofmann HJ; Bordusa F Biochemistry; 1999 May; 38(19):6056-62. PubMed ID: 10320331 [TBL] [Abstract][Full Text] [Related]
3. Substrate mimetics in protease catalysis: characteristics, kinetics, and synthetic utility. Bordusa F Curr Protein Pept Sci; 2002 Apr; 3(2):159-80. PubMed ID: 12188901 [TBL] [Abstract][Full Text] [Related]
4. Trypsin-specific acyl-4-guanidinophenyl esters for alpha-chymotrypsin-catalysed reactions computational predictions, hydrolyses, and peptide bond formation. Günther R; Thust S; Hofmann HJ; Bordusa F Eur J Biochem; 2000 Jun; 267(12):3496-501. PubMed ID: 10848965 [TBL] [Abstract][Full Text] [Related]
5. In crystallo capture of a Michaelis complex and product-binding modes of a bacterial phosphotriesterase. Jackson CJ; Foo JL; Kim HK; Carr PD; Liu JW; Salem G; Ollis DL J Mol Biol; 2008 Feb; 375(5):1189-96. PubMed ID: 18082180 [TBL] [Abstract][Full Text] [Related]
6. Trapping of an acyl-enzyme intermediate in a penicillin-binding protein (PBP)-catalyzed reaction. Macheboeuf P; Lemaire D; Teller N; Martins Ados S; Luxen A; Dideberg O; Jamin M; Dessen A J Mol Biol; 2008 Feb; 376(2):405-13. PubMed ID: 18155726 [TBL] [Abstract][Full Text] [Related]
7. Flexibility of prolyl oligopeptidase: molecular dynamics and molecular framework analysis of the potential substrate pathways. Fuxreiter M; Magyar C; Juhász T; Szeltner Z; Polgár L; Simon I Proteins; 2005 Aug; 60(3):504-12. PubMed ID: 15971204 [TBL] [Abstract][Full Text] [Related]
8. Structure of a complex of Thermoactinomyces vulgaris R-47 alpha-amylase 2 with maltohexaose demonstrates the important role of aromatic residues at the reducing end of the substrate binding cleft. Ohtaki A; Mizuno M; Yoshida H; Tonozuka T; Sakano Y; Kamitori S Carbohydr Res; 2006 Jun; 341(8):1041-6. PubMed ID: 16564038 [TBL] [Abstract][Full Text] [Related]
9. Transpeptidation reactions of a specific substrate catalyzed by the streptomyces R61 DD-peptidase: characterization of a chromogenic substrate and acyl acceptor design. Kumar I; Pratt RF Biochemistry; 2005 Aug; 44(30):9971-9. PubMed ID: 16042374 [TBL] [Abstract][Full Text] [Related]
10. Transition state docking: a probe for noncovalent catalysis in biological systems. Application to antibody-catalyzed ester hydrolysis. Tantillo DJ; Houk KN J Comput Chem; 2002 Jan; 23(1):84-95. PubMed ID: 11913392 [TBL] [Abstract][Full Text] [Related]
11. Computational prediction of structure, substrate binding mode, mechanism, and rate for a malaria protease with a novel type of active site. Bjelic S; Aqvist J Biochemistry; 2004 Nov; 43(46):14521-8. PubMed ID: 15544322 [TBL] [Abstract][Full Text] [Related]
12. Rat butyrylcholinesterase-catalysed hydrolysis of N-alkyl homologues of benzoylcholine. Hrabovská A; Debouzy JC; Froment MT; Devínsky F; Pauliková I; Masson P FEBS J; 2006 Mar; 273(6):1185-97. PubMed ID: 16519684 [TBL] [Abstract][Full Text] [Related]
13. Resolution of chiral phosphate, phosphonate, and phosphinate esters by an enantioselective enzyme library. Nowlan C; Li Y; Hermann JC; Evans T; Carpenter J; Ghanem E; Shoichet BK; Raushel FM J Am Chem Soc; 2006 Dec; 128(49):15892-902. PubMed ID: 17147402 [TBL] [Abstract][Full Text] [Related]
14. Thermodynamic and structural basis for transition-state stabilization in antibody-catalyzed hydrolysis. Oda M; Ito N; Tsumuraya T; Suzuki K; Sakakura M; Fujii I J Mol Biol; 2007 May; 369(1):198-209. PubMed ID: 17428500 [TBL] [Abstract][Full Text] [Related]
15. Molecular docking for substrate identification: the short-chain dehydrogenases/reductases. Favia AD; Nobeli I; Glaser F; Thornton JM J Mol Biol; 2008 Jan; 375(3):855-74. PubMed ID: 18036612 [TBL] [Abstract][Full Text] [Related]
16. Chemically modified "polar patch" mutants of subtilisin in peptide synthesis with remarkably broad substrate acceptance: designing combinatorial biocatalysts. Matsumoto K; Davis BG; Jones JB Chemistry; 2002 Sep; 8(18):4129-37. PubMed ID: 12298003 [TBL] [Abstract][Full Text] [Related]
17. In silico analyses of substrate interactions with human serum paraoxonase 1. Hu X; Jiang X; Lenz DE; Cerasoli DM; Wallqvist A Proteins; 2009 May; 75(2):486-98. PubMed ID: 18951406 [TBL] [Abstract][Full Text] [Related]
19. Combined enzyme and substrate design: grafting of a cooperative two-histidine catalytic motif into a protein targeted at the scissile bond in a designed ester substrate. Höst GE; Razkin J; Baltzer L; Jonsson BH Chembiochem; 2007 Sep; 8(13):1570-6. PubMed ID: 17665409 [TBL] [Abstract][Full Text] [Related]
20. Regioselectivity prediction of CYP1A2-mediated phase I metabolism. Jung J; Kim ND; Kim SY; Choi I; Cho KH; Oh WS; Kim DN; No KT J Chem Inf Model; 2008 May; 48(5):1074-80. PubMed ID: 18412330 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]