These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

57 related articles for article (PubMed ID: 15136816)

  • 1. One molecule per particle method for functionalising nanoparticles.
    Wilson R; Chen Y; Aveyard J
    Chem Commun (Camb); 2004 May; (10):1156-7. PubMed ID: 15136816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functionalization of gold and glass surfaces with magnetic nanoparticles using biomolecular interactions.
    Nidumolu BG; Urbina MC; Hormes J; Kumar CS; Monroe WT
    Biotechnol Prog; 2006; 22(1):91-5. PubMed ID: 16454497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoparticles on the basis of highly functionalized dextrans.
    Liebert T; Hornig S; Hesse S; Heinze T
    J Am Chem Soc; 2005 Aug; 127(30):10484-5. PubMed ID: 16045324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of biocompatible dextran-coated nanoceria with pH-dependent antioxidant properties.
    Perez JM; Asati A; Nath S; Kaittanis C
    Small; 2008 May; 4(5):552-6. PubMed ID: 18433077
    [No Abstract]   [Full Text] [Related]  

  • 5. Physicochemical characterisation of cationic polybutylcyanoacrylate-nanoparticles by fluorescence correlation spectroscopy.
    Weyermann J; Lochmann D; Georgens C; Rais I; Kreuter J; Karas M; Wolkenhauer M; Zimmer A
    Eur J Pharm Biopharm; 2004 Jul; 58(1):25-35. PubMed ID: 15207534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of ultrasmall superparamagnetic iron oxides using reduced polysaccharides.
    Paul KG; Frigo TB; Groman JY; Groman EV
    Bioconjug Chem; 2004; 15(2):394-401. PubMed ID: 15025537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the synthesis and characterization of biodegradable dextran nanogels with tunable degradation properties.
    Van Thienen TG; Lucas B; Demeester J; De Smedt SC
    J Control Release; 2006 Nov; 116(2):e12-3. PubMed ID: 17718944
    [No Abstract]   [Full Text] [Related]  

  • 8. Formation of biocompatible nanoparticles via the self-assembly of chitosan and modified lecithin.
    Chuah AM; Kuroiwa T; Ichikawa S; Kobayashi I; Nakajima M
    J Food Sci; 2009; 74(1):N1-8. PubMed ID: 19200109
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accelerating the peroxidase-like activity of MoSe
    Jiang G; Lin T; Qin Y; Zhang X; Hou L; Sun Y; Huang J; Liu S; Zhao S
    Chem Commun (Camb); 2020 Sep; 56(74):10847-10850. PubMed ID: 32789398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of biocompatible nanoparticles by self-assembly of enzymatic hydrolysates of chitosan and carboxymethyl cellulose.
    Ichikawa S; Iwamoto S; Watanabe J
    Biosci Biotechnol Biochem; 2005 Sep; 69(9):1637-42. PubMed ID: 16195579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spherical aggregates composed of gold nanoparticles.
    Chen CC; Kuo PL; Cheng YC
    Nanotechnology; 2009 Feb; 20(5):055603. PubMed ID: 19417350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-step synthesis of amino-dextran-protected gold and silver nanoparticles and its application in biosensors.
    Ma Y; Li N; Yang C; Yang X
    Anal Bioanal Chem; 2005 Jun; 382(4):1044-8. PubMed ID: 15906012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequential self-assembly of a DNA hexagon as a template for the organization of gold nanoparticles.
    Aldaye FA; Sleiman HF
    Angew Chem Int Ed Engl; 2006 Mar; 45(14):2204-9. PubMed ID: 16502437
    [No Abstract]   [Full Text] [Related]  

  • 14. Assembly of metal nanoparticles into nanogaps.
    Barsotti RJ; Vahey MD; Wartena R; Chiang YM; Voldman J; Stellacci F
    Small; 2007 Mar; 3(3):488-99. PubMed ID: 17290481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Au nanowire-Au nanoparticles conjugated system which provides micrometer size molecular sensors.
    Kang T; Yoon I; Kim J; Ihee H; Kim B
    Chemistry; 2010 Jan; 16(4):1351-5. PubMed ID: 19967728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular-weight distribution determination of clinical dextran by gel permeation chromatography.
    Nilsson G; Nilsson K
    J Chromatogr; 1974 Dec; 101(1):137-53. PubMed ID: 4443379
    [No Abstract]   [Full Text] [Related]  

  • 17. The choice of a suitable oligosaccharide to prevent aggregation of PEGylated nanoparticles during freeze thawing and freeze drying.
    Hinrichs WL; ManceƱido FA; Sanders NN; Braeckmans K; De Smedt SC; Demeester J; Frijlink HW
    Int J Pharm; 2006 Mar; 311(1-2):237-44. PubMed ID: 16442758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembly of gibberellic amide assemblies and their applications in the growth and fabrication of ordered gold nanoparticles.
    Smoak EM; Carlo AD; Fowles CC; Banerjee IA
    Nanotechnology; 2010 Jan; 21(2):025603. PubMed ID: 19955623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of nanostructures by orthogonal self-assembly of hydrogelators and surfactants.
    Brizard A; Stuart M; van Bommel K; Friggeri A; de Jong M; van Esch J
    Angew Chem Int Ed Engl; 2008; 47(11):2063-6. PubMed ID: 18273844
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.