BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 15137026)

  • 1. The application of the acoustic spectrophonometer to biomolecular spectrometry: a step towards acoustic "fingerprinting".
    Stevenson AC; Araya-Kleinsteuber B; Sethi RS; Mehta HM; Lowe CR
    J Mol Recognit; 2004; 17(3):174-9. PubMed ID: 15137026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The acoustic spectrophonometer: a novel bioanalytical technique based on multifrequency acoustic devices.
    Stevenson AC; Araya-Kleinsteuber B; Sethi RS; Mehta HM; Lowe CR
    Analyst; 2003 Oct; 128(10):1222-7. PubMed ID: 14667156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Planar coil excitation of multifrequency shear wave transducers.
    Stevenson AC; Araya-Kleinsteuber B; Sethi RS; Metha HM; Lowe CR
    Biosens Bioelectron; 2005 Jan; 20(7):1298-304. PubMed ID: 15590282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the applicability of high frequency acoustic shear mode biosensing in view of thickness limitations set by the film resonance.
    Wingqvist G; Anderson H; Lennartsson C; Weissbach T; Yantchev V; Spetz AL
    Biosens Bioelectron; 2009 Jul; 24(11):3387-90. PubMed ID: 19447595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A survey of the 2001 to 2005 quartz crystal microbalance biosensor literature: applications of acoustic physics to the analysis of biomolecular interactions.
    Cooper MA; Singleton VT
    J Mol Recognit; 2007; 20(3):154-84. PubMed ID: 17582799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 170-MHz electrodeless quartz crystal microbalance biosensor: capability and limitation of higher frequency measurement.
    Ogi H; Nagai H; Fukunishi Y; Hirao M; Nishiyama M
    Anal Chem; 2009 Oct; 81(19):8068-73. PubMed ID: 19728731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Viscoelastic modeling with interfacial slip of a protein monolayer electrode-adsorbed on an acoustic wave biosensor.
    Ellis JS; Thompson M
    Langmuir; 2010 Jul; 26(13):11558-67. PubMed ID: 20394431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wireless electrodeless piezomagnetic biosensor with an isolated nickel oscillator.
    Ogi H; Motohisa K; Matsumoto T; Mizugaki T; Hirao M
    Biosens Bioelectron; 2006 Apr; 21(10):2001-5. PubMed ID: 16289826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic acoustic resonance immunoassay (MARIA): a multifrequency acoustic approach for the non-labelled detection of biomolecular interactions.
    Araya-Kleinsteuber B; Roque AC; Kioupritzi E; Stevenson AC; Lowe CR
    J Mol Recognit; 2006; 19(4):379-85. PubMed ID: 16804864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitivity of the acoustic waveguide biosensor to protein binding as a function of the waveguide properties.
    Gizeli E; Bender F; Rasmusson A; Saha K; Josse F; Cernosek R
    Biosens Bioelectron; 2003 Oct; 18(11):1399-406. PubMed ID: 12896842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvement of surface acoustic wave gas and biosensor response characteristics using a capacitive coupling technique.
    Bender F; Länge K; Voigt A; Rapp M
    Anal Chem; 2004 Jul; 76(13):3837-40. PubMed ID: 15228363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High frequency shear horizontal plate acoustic wave devices.
    Vohra G; Joshi SG; Zaitsev BD; Kuznetsova IE; Teplykh AA
    Ultrasonics; 2009 Dec; 49(8):760-4. PubMed ID: 19577781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of cocaine plumes using surface acoustic wave immunoassay sensors.
    Stubbs DD; Lee SH; Hunt WD
    Anal Chem; 2003 Nov; 75(22):6231-5. PubMed ID: 14616006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lead identification and optimization in crude samples using label free resonant acoustic profiling.
    Schnerr HR
    J Mol Recognit; 2010; 23(6):597-603. PubMed ID: 20549603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of viral bioagents using a shear horizontal surface acoustic wave biosensor.
    Bisoffi M; Hjelle B; Brown DC; Branch DW; Edwards TL; Brozik SM; Bondu-Hawkins VS; Larson RS
    Biosens Bioelectron; 2008 Apr; 23(9):1397-403. PubMed ID: 18262781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational chemistry of surface-attached calmodulin detected by acoustic shear wave propagation.
    Wang X; Ellis JS; Lyle EL; Sundaram P; Thompson M
    Mol Biosyst; 2006 Mar; 2(3-4):184-92. PubMed ID: 16880936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wireless excitation of quartz crystals immersed in an aqueous fluid.
    Stevenson AC; Roque AC; Araya-Kleinsteuber B; Kioupritzi E; Lowe CR
    Analyst; 2006 Apr; 131(4):474-6. PubMed ID: 16568161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of Escherichia coli O157:H7 with langasite pure shear horizontal surface acoustic wave sensors.
    Berkenpas E; Millard P; Pereira da Cunha M
    Biosens Bioelectron; 2006 Jun; 21(12):2255-62. PubMed ID: 16356708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative surface acoustic wave detection based on colloidal gold nanoparticles and their bioconjugates.
    Chiu CS; Gwo S
    Anal Chem; 2008 May; 80(9):3318-26. PubMed ID: 18363384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A stable, label-free optical interferometric biosensor based on TiO2 nanotube arrays.
    Mun KS; Alvarez SD; Choi WY; Sailor MJ
    ACS Nano; 2010 Apr; 4(4):2070-6. PubMed ID: 20356100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.