BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 15137083)

  • 1. Fed-batch optimization of alpha-amylase and protease-producing Bacillus subtilis using Markov chain methods.
    Skolpap W; Scharer JM; Douglas PL; Moo-Young M
    Biotechnol Bioeng; 2004 Jun; 86(6):706-17. PubMed ID: 15137083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced amylase production by Bacillus subtilis using a dual exponential feeding strategy.
    Huang H; Ridgway D; Gu T; Moo-Young M
    Bioprocess Biosyst Eng; 2004 Dec; 27(1):63-9. PubMed ID: 15645311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of α-amylase production by Bacillus subtilis.
    Lyubenova V; Ignatova M; Salonen K; Kiviharju K; Eerikäinen T
    Bioprocess Biosyst Eng; 2011 Mar; 34(3):367-74. PubMed ID: 21069387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Optimization of cultivation conditions of the alpha-amylase producer Bacillus subtilis 147].
    Avdiiuk KV; Varbanets' LD
    Mikrobiol Z; 2008; 70(1):10-6. PubMed ID: 18416149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alpha-amylase production by Bacillus subtilis CM3 in solid state fermentation using cassava fibrous residue.
    Swain MR; Ray RC
    J Basic Microbiol; 2007 Oct; 47(5):417-25. PubMed ID: 17910107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of carbon dioxide on the formation of alpha-amylase by Bacillus subtilis growing in continuous and batch cultures.
    Gandhi AP; Kjaergaard L
    Biotechnol Bioeng; 1975 Aug; 17(8):1109-18. PubMed ID: 829576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parametric analysis of metabolic fluxes of alpha-amylase and protease-producing Bacillus subtilis.
    Skolpap W; Nuchprayoon S; Scharer JM; Moo-Young M
    Bioprocess Biosyst Eng; 2007 Sep; 30(5):337-48. PubMed ID: 17514498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of human serum albumin production in methylotrophic yeast Pichia pastoris by repeated fed-batch fermentation.
    Ohya T; Ohyama M; Kobayashi K
    Biotechnol Bioeng; 2005 Jun; 90(7):876-87. PubMed ID: 15864809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Partial purification of alpha-amylase from culture supernatant of Bacillus subtilis in aqueous two-phase systems.
    Zhi W; Song J; Bi J; Ouyang F
    Bioprocess Biosyst Eng; 2004 Dec; 27(1):3-7. PubMed ID: 15316766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual feeding strategy for the production of alpha-amylase by Bacillus caldolyticus using complex media.
    Schwab K; Bader J; Brokamp C; Popović MK; Bajpai R; Berovic M
    N Biotechnol; 2009 Oct; 26(1-2):68-74. PubMed ID: 19439206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simple structured model for biomass and extracellular enzyme production with recombinant Saccharomyces cerevisiae YPB-G.
    Birol G; Kirdar B; Onsan ZI
    J Ind Microbiol Biotechnol; 2002 Sep; 29(3):111-6. PubMed ID: 12242631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On-line optimization of recombinant product in a fed-batch bioreactor.
    Mahadevan R; Doyle III FJ
    Biotechnol Prog; 2003; 19(2):639-46. PubMed ID: 12675609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of alpha-amylase in fed-batch cultures of vgb+ and vgb- recombinant Escherichia coli: some observations.
    Enayati N; Tari C; Parulekar SJ; Stark BC; Webster DA
    Biotechnol Prog; 1999; 15(4):640-5. PubMed ID: 10441355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discrimination of riboflavin producing Bacillus subtilis strains based on their fed-batch process performances on a millilitre scale.
    Vester A; Hans M; Hohmann HP; Weuster-Botz D
    Appl Microbiol Biotechnol; 2009 Aug; 84(1):71-6. PubMed ID: 19319520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Cultivation of the producer of alpha-amylase Bacillus subtilis under batch and continuous conditions].
    Lirova SA; Ermakova LM; Rabotnova IL; Khovrychev MP
    Mikrobiologiia; 1988; 57(5):740-4. PubMed ID: 3150517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of riboflavin production by recombinant Bacillus subtilis RH44 using statistical designs.
    Wu QL; Chen T; Gan Y; Chen X; Zhao XM
    Appl Microbiol Biotechnol; 2007 Sep; 76(4):783-94. PubMed ID: 17576552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of fungal alpha-amylase by Saccharomyces kluyveri in glucose-limited cultivations.
    Møller K; Sharif MZ; Olsson L
    J Biotechnol; 2004 Aug; 111(3):311-8. PubMed ID: 15246667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterisation of mutagenised acid-resistant alpha-amylase expressed in Bacillus subtilis WB600.
    Liu YH; Lu FP; Li Y; Yin XB; Wang Y; Gao C
    Appl Microbiol Biotechnol; 2008 Feb; 78(1):85-94. PubMed ID: 18157528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid on-line optimal control strategy for producing α-amylase by Bacillus subtilis.
    Zhao W; Zheng J; Zhou HB
    Biosci Biotechnol Biochem; 2011; 75(4):694-9. PubMed ID: 21512239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maximization of production of secreted recombinant proteins in Pichia pastoris fed-batch fermentation.
    Zhang W; Sinha J; Smith LA; Inan M; Meagher MM
    Biotechnol Prog; 2005; 21(2):386-93. PubMed ID: 15801775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.