These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 15137110)

  • 41. Scaled interfacial activity of proteins at a hydrophobic solid/aqueous-buffer interface.
    Krishnan A; Liu YH; Cha P; Allara D; Vogler EA
    J Biomed Mater Res A; 2005 Nov; 75(2):445-57. PubMed ID: 16104049
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Adsorption of proteins at the oil/water interface--observation of protein adsorption by interfacial shear stress measurements.
    Baldursdottir SG; Fullerton MS; Nielsen SH; Jorgensen L
    Colloids Surf B Biointerfaces; 2010 Aug; 79(1):41-6. PubMed ID: 20434317
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of sucrose on the properties of caffeine adsorption layers at the air/solution interface.
    Aroulmoji V; Aguié-Béghin V; Mathlouthi M; Douillard R
    J Colloid Interface Sci; 2004 Aug; 276(2):269-76. PubMed ID: 15271552
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Directed assembly of binary monolayers with a high protein affinity: infrared reflection absorption spectroscopy (IRRAS) and surface plasmon resonance (SPR).
    Du X; Wang Y
    J Phys Chem B; 2007 Mar; 111(9):2347-56. PubMed ID: 17286427
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Molecular recognition on the supported and on the air/water interface-spread protein monolayers.
    Baszkin A
    Adv Colloid Interface Sci; 2006 Dec; 128-130():111-20. PubMed ID: 17196538
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mucin at solution/air and solid/solution interfaces.
    Maheshwari R; Dhathathreyan A
    J Colloid Interface Sci; 2006 Jan; 293(2):263-9. PubMed ID: 16083896
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Electrostatic interactions in protein adsorption probed by comparing lysozyme and succinylated lysozyme.
    van der Veen M; Norde W; Stuart MC
    Colloids Surf B Biointerfaces; 2004 May; 35(1):33-40. PubMed ID: 15261053
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Molecular hydrophobic attraction and ion-specific effects studied by molecular dynamics.
    Horinek D; Serr A; Bonthuis DJ; Boström M; Kunz W; Netz RR
    Langmuir; 2008 Feb; 24(4):1271-83. PubMed ID: 18220430
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Model simulations of the adsorption of statherin to solid surfaces: Effects of surface charge and hydrophobicity.
    Skepö M
    J Chem Phys; 2008 Nov; 129(18):185101. PubMed ID: 19045429
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Forces between hydrophilic surfaces adsorbed with apolipoprotein AII alpha helices.
    Ramos S; Campos-Terán J; Mas-Oliva J; Nylander T; Castillo R
    Langmuir; 2008 Aug; 24(16):8568-75. PubMed ID: 18652418
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of carboxyl groups on the adsorption behavior of low-molecular-weight substances on a stainless steel surface.
    Nagayasu T; Yoshioka C; Imamura K; Nakanishi K
    J Colloid Interface Sci; 2004 Nov; 279(2):296-306. PubMed ID: 15464793
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Driving force behind adsorption-induced protein unfolding: a time-resolved X-ray reflectivity study on lysozyme adsorbed at an air/water interface.
    Yano YF; Uruga T; Tanida H; Toyokawa H; Terada Y; Takagaki M; Yamada H
    Langmuir; 2009 Jan; 25(1):32-5. PubMed ID: 19072146
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of pH and ionic strength on competitive protein adsorption to air/water interfaces in aqueous foams made with mixed milk proteins.
    Zhang Z; Dalgleish DG; Goff HD
    Colloids Surf B Biointerfaces; 2004 Mar; 34(2):113-21. PubMed ID: 15261081
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The role of electrolytes on protein adsorption at a hydrophilic solid-water interface.
    Wendorf JR; Radke CJ; Blanch HW
    Colloids Surf B Biointerfaces; 2010 Jan; 75(1):100-6. PubMed ID: 19735992
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Displacement of fibrinogen from the air/aqueous interface by dilauroylphosphatidylcholine lipid.
    Phang TL; McClellan SJ; Franses EI
    Langmuir; 2005 Oct; 21(22):10140-7. PubMed ID: 16229537
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Adsorption of trypsin on hydrophilic and hydrophobic surfaces.
    Koutsopoulos S; Patzsch K; Bosker WT; Norde W
    Langmuir; 2007 Feb; 23(4):2000-6. PubMed ID: 17279687
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Strong improvement of interfacial properties can result from slight structural modifications of proteins: the case of native and dry-heated lysozyme.
    Desfougères Y; Saint-Jalmes A; Salonen A; Vié V; Beaufils S; Pezennec S; Desbat B; Lechevalier V; Nau F
    Langmuir; 2011 Dec; 27(24):14947-57. PubMed ID: 22040020
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Interfacial properties of mixed beta-lactoglobulin-SDS layers at the water/air and water/oil interface.
    Pradines V; Krägel J; Fainerman VB; Miller R
    J Phys Chem B; 2009 Jan; 113(3):745-51. PubMed ID: 19113874
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Macromolecular crowding at membrane interfaces: adsorption and alignment of membrane peptides.
    Aisenbrey C; Bechinger B; Gröbner G
    J Mol Biol; 2008 Jan; 375(2):376-85. PubMed ID: 18022193
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Influence of electrostatic interactions on the surface adsorption of a viral protein cage.
    Suci PA; Klem MT; Douglas T; Young M
    Langmuir; 2005 Sep; 21(19):8686-93. PubMed ID: 16142949
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.